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My scholastic passion: Manufacturing, Sensing, and Analytics.

Neurophysiology Metal Additive Manufacturing (AM)

Seizure Interval

Ultraprecision Machining and Polishing Polymer Additive Manufacturing and
Graduate Studies Aerosol Jet Printing

Diamond Turning Polishing Printed Electronics

4 mm H

Fused Filament




My research goal is to make flaw-free AM parts.

Observing the Process Signatures
Sensing

Born Qualified
Zero defects
Digital Twin

In-process Quality Assurance

Qualify-as-you-build

Modeling Model diagnosis and calibration Analytics

Understanding the Detecting Defects from the
Process Physics Process Signatures




Prior Work with Oakridge

Using graph theory to quantify the dimensional
variation between parts from point cloud data.
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Tell what went wrong, where it went wrong, and by how much?

P. Rao, Z. Kong, V. Kunc, R. Smith, C. Duty, Assessment of Dimensional Integrity and Spatial Defect
Localization in Additive Manufacturing (AM) using Spectral Graph Theory (SGT). ASME Transactions,
Journal of Manufacturing Science and Engineering. 138(5), doi: 10.1115/1.4031574

LINK


https://asmedigitalcollection.asme.org/manufacturingscience/article-abstract/138/5/051007/376769/Assessment-of-Dimensional-Integrity-and-Spatial?redirectedFrom=fulltext

This presentation has two parts.

Part |: Ultrafast thermal modeling in AM using graph theory (Slide 15 — 70).
Part |I: Combining thermal modeling with data analytics (Slide 71 — 83).
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This work has been published

A.C. Gaikwad, R. Yavari, M. Montazeri, K. Cole, L. Bian, P. Rao,

Toward the Digital Twin in Metal Additive Manufacturing — Integrating Thermal
Simulations, Sensing, and Analytics to Detect Process Faults,

lISE Transactions (Accepted)

10.1080/24725854.2019.1701753

R. Yavari, K. Cole, P. Rao

Thermal Modeling in Metal Additive Manufacturing using Graph Theory.
ASME Transactions, Journal of Manufacturing Science and Engineering
2019, Vol. 141, pp. 0710071-20.

10.1115/1.4043648



https://www.tandfonline.com/doi/full/10.1080/24725854.2019.1701753
http://manufacturingscience.asmedigitalcollection.asme.org/article.aspx?articleid=2733087&resultClick=3

12
Ultrafast Thermal Simulation of Metal Additive Manufacturing

Simulate the thermal field in AM in near real-time using graph theory.

* Mesh-free, discrete modeling.
« Faster and error within 10% of finite element analysis.

Graph Theory Finite Element (Abaqus) Commercial Code
18 minutes 180 minutes 30 minutes
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Decreasing flexibility and ability to tinker >
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Objective and Hypothesis

Solve the heat diffusion equation using graph theory.

0T (x,y,z,t) " 0? N 0? N 92 . Nk
P ™3¢ oxz T oy T oz ) Ty 2t) = By

Hypothesis

The heat equation is solved using graph theory.

Qutcome
Graph theory takes 1/10™ of time to converge than finite element
analysis within acceptable error (10%).
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Application to Flaw Detection: Digital Twin

In-process sensor data + Theoretical Simulations — Defect prediction

Sensor Data
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Who Cares?

Fundamental research is needed in AM processes
integrating modeling, sensing, and process control.

2014 NSF Additive Manufacturing Workshop Report.

Y. Huang, M. C. Leu, J. Mazumder, and A. Donmez, Additive Manufacturing: Current State, Future Potential, Gaps and Needs, and
Recommendations, Transactions of the ASME, Journal of Manufacturing Science and Engineering, vol. 137, p. 014001, 2015.



Outline

Motivation & Rationale
Who cares?
Part I: The graph theory approach for thermal modeling in AM
How does it work, and what is different about it?
Verification of the graph theory approach
How does it compare to the known solutions and existing techniques?
Experimental validation

How well does it work in the real-world?

Part Il: Application (Digital Twin)

Combining thermal modeling with machine learning to detect defects

Conclusions and future work

16
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Research Goal

Predict the thermal history in AM parts and use the knowledge to prevent defects.

Poor finish and
overheating

e

Overhang

Powder
Recoater\ '

Powder
Reservoir

I_r

Bed

Metal AM Knee Implan

Part quality (geometry, microstructure, surface finish)
in AM is governed by the thermal history.
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Build-and-test is ineffective in AM

Seven identical parts built simultaneously on a commercial machine. Only 2 out of 7 were built defect free.
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Everything is linked to the thermal history

Experiments may span over several years and cost millions of dollars.

AM Software &

Part Geometry

Scan Strategy

Beam Interactions | Heat Transfer
Process Temperature

Applied Energy

AM Hardware Feedstock Quality

Build Chamber
Atmosphere

Material

Chemistry

)

Melting & Melt
Pool Geometry

Porosity

Cracking, Swelling,
Delamination

¥

Solidification

I

L

v

Microstructural Evolution

Cool Down

v

Residual Stress

J

Substrate
> Adherence &
Warping

Vv
Surface Finish —

Grain Size & Orientation

v

Machining

Failed Builds

W. J. Sames, F. A. List, S. Pannala, R. R. Dehoff & S. S. Babu (2016) The metallurgy and processing science of metal additive
manufacturing, International Materials Reviews, 61:5, 315-360, DOI: 10.1080/09506608.2015.1116649

Thermal Post-Processing

v

Feature Size &
Geometry Scaling

Mechanical Properties



https://doi.org/10.1080/09506608.2015.1116649
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Rationale

It is important to have a simulation capability and models that can predict part
performance, support development of processing and materials strategies, and
enable materials design in an integrated fashion.

W. J. Sames, F. A. List, S. Pannala, R. R. Dehoff & S. S. Babu (2016) The metallurgy and processing science of metal additive
manufacturing, International Materials Reviews, 61:5, 315-360, DOI: 10.1080/09506608.2015.1116649



https://doi.org/10.1080/09506608.2015.1116649
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Combine process physics with data analytics and sensing to scale AM

Paradigm shift from empirical optimization to physics-driven AM.

Materials &
Process
—\ Optimization
Predict
Residual Part Design,
Stresses & Placement,
Warping \_ Orientation, & >
, ‘ Suppons
\\ //;
Y U Thermal \\

—\ History /
Predict _
Microstructure, Sensing &
Alloy Phases, Analytics

\ and Defects /
\ Process
Monitoring
& Control My Expertise Area




My Vision: Correct-as-you-build in AM

Theoretical Modeling. Theoretical Model + Adaptive Control
— Process Correction

Defect Correction :

* Rescanning the layer I
» Machining defective layer and re- :
|

|

I------------------
I B
I Predict the thermal 4
I bhenomena in metal

=AM in near real-time.

depositing a new layer.

Remove defects, I

Thermal Image Light Intensity Rescanning machining
' with changed o
laser power Machining

and velocity to Head

correct defects
such as pores

. U . ——

Excess’
- Powde

..' t@‘ -«

Acicular‘“ Delamination
Pores Pores and Cracking

Sensing and Analytics for Real-time Defect Defection.
Sensor Signatures + Theoretical Predictions — Defects

F-----——----1
S e L
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Unigue Capabilities for Metal AM in Nebraska

-"__", /! /

- —

LENS®

3D M
3D METAL HYBRID VMC INERT

2 X Matsuura Lumex Hybrid LPBF Optomec LENS 450 Hybrid DED

 Optomec LENS 450 Hybrid Directed Energy Deposition Metal Additive Manufacturing system
« Matsuura Lumex Avance Hybrid Laser Powder Bed Fusion Machine (open atmosphere)
« Matsuura Lumex Avance Hybrid Laser Powder Bed Fusion Machine (inert atmosphere)
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Hybrid AM is the key to Correct-as-you-build.

Hybrid Additive Manufacturing
& (Machining + powder bed fusion)

Only laser powder
bed fusion

Hybrid Additive Manufacturing
- (Machining + powder bed fusion)

y | £ ji
@l Only laser powder bed fusion

S saga]
Syl




Outline

* Motivation
e Part |: Graph theory approach for thermal modeling in AM

How does it work, and what is different about the approach?

25
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Background to Thermal Modeling in AM

1. Meltpool or small-scale modeling (< 100 um)
Focuses on heat source interaction zone (melt-pool)

2. Part-scale modeling (> 100 um)
Focus on predicting part-level distortion and residual stresses

Meltpool Scale Part- Scale Modeling

\ M0y -2 T L > 100 pm
<10um 10 um — 100 um 100 pm =200 pm Thermal-induced cracking
Vaporization Melting/Fusion Meltpool dynamics and distortion

W. J. Sames, F. List, S. Pannala, R. R. Dehoff, and S. S. Babu, "The Metallurgy and Processing Science
of Metal Additive Manufacturing," International Materials Reviews, vol. 61, pp. 315-360, 2016. N
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Part-level thermal modeling in AM is computationally intensive

It takes several hours, if not days to conduct thermal analysis of a simple geometry.

THE CORRECT ANSWER REQUIRES VECTOR-BY-VECTOR
COMPUTATION

Without Supports
Layers: 66
Hatches Considered: 17,490
Laser Positions: 13,216,038

40mm X 5Smm x 2mm part

With pillar supports
Layers: 233
Hatches Considered: 61,745
Laser Positions: 25,766,422

ANSYS Computational Time E
~150 years

b
#@) 3DSIM

P @ WWW.3DSIM.COM
.

Z.Luo and Y. Zhao, "A survey of finite element analysis of temperature and thermal stress fields in powder bed fusion Additive Manufacturing," Additive
Manufacturing, vol. 21, pp. 318-332, 2018/05/01/ 2018.



28
Thermal modeling in AM involves multi-scale phenomena

Simplify computation by ignoring meltpool-level and meso-scale phenomena

Frame 2744
t=1539.7 ms

Residual heat at
overhang

Melt pool

continuing 3" stripe

1) Energy supplied by the laser

2) Radiation on the top layer (part to air)

3) Conduction within the part (within part)

4) Convection between part and surrounding area
5) Latent heat at the melt-pool.

6) Temperature dependent properties

King, W., Anderson, A., Ferencz, R., Hodge, N., Kamath, C., Khairallah, S., and Rubenchik, A., 2015, "Laser powder bed fusion additive manufacturing of metals; physics, computational,

and materials challenges," Applied Physics Reviews, 2(4), p. 041304.

Khairallah, S. A., Anderson, A. T., Rubenchik, A., and King, W. E., 2016, "Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of

pores, spatter, and denudation zones," Acta Materialia, 108, pp. 36-45. N
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Graph Theory Approach for Thermal Modeling in AM

Layers to follow

.
"“ , b4 !.(
Fa ¢ . LT
.. ¥ - G SR
0 i % -
) ¢
/

Deposited
Layer
N\
Nodes
Step 1- Convert the part into a set of discrete nodes Step 2- Network graph construction

Laser

Sintered Hatch / 1

Fused Layer

0.75

05

New Deposited Layer

025

* Heating a layer, hatch by hatch, Res.ult as temperature matrix
» Diffusion of the heat through the part which shows the temperature
 Deposition of a new layer history of the part



The Scientific Problem

Solve the steady-state continuum heat diffusion equation

Temperature (T) is a function of space (x, y, z) and time (t)
The Heat Equation (Fourier’'s Law of Conduction)

LT (AR
P e oz Tayz T az) T

Time (t) Space (x,y,z)

K = thermal conductivity p = density C, = specific heat

30




Solving the Heat Equation with Graph Theory

0T k 62+62+82 T o
dt  pcp, \0x* Jdy* 0z° v

Laplacian operator

2 22 9
A= <6x2 Ty T aZZ>

OT
— — a(A)T =
o~ ()T =0

Thermal diffusivity
k/pc, =a

Melting point of the material



Solving the Heat Equation with Graph Theory

ot (A)T=0
FT B

The Key Idea

Replace the continuous Laplacian operator A
with a discrete matrix called the Graph Laplacian L.

A~ — L

o, (L)T =0
ot ¢ B

Why do it this way?
The second derivative term does not have to be solved.

32




Solving the Heat Equation with Graph Theory

AN (L)T =0
ot ¢ B

First Order differential equation — separate variables and integrate.

—aL(InT) =t+ K

T =e @(DT,

33



Solving the Heat Equation with Graph Theory

—_ —a(L)t
Decompose L into eigenvalues and eigenvectors
Lo = PpA
L=dAd™"
Eigenvectors of L are orthogonal
¢! = ¢
L = AP

T = e~ 2(dAPN)L T,

The Heat Equation is solved as a function of the
Eigenvalues (A) and Eigenvectors (¢) of the Discrete Laplacian Matrix (L)

34




e —CZ((I)A(I)’)t

e-a(@10)t = 1 _ g

e_a((p/l(p’)t e

Simplify e ~@(@APDE = ¢ e=a(d)t ¢

Taylor Series Expansion

( a(cbllcb)t) (- a(¢A¢')t)2+(—a(¢A¢')t)3+

_bhatd’  d(Aat)’d’  d(Aat) "

1! 2! 3!
.= oG
PAP’ 2,2 (<I>A¢ )(dAD") 303 (<I>A¢ )(<I>A¢ )(<|>A<I>)
a T + T —a°t°’ — 3'

1! 2! 3!

T = pe *WiH'T,

— ¢e—a(At)¢/

35




Solving the Heat Equation with Graph Theory

The Heat Equation is solved as a function of the
Eigenvalues (A) and Eigenvectors (¢) of L

T = pe 2 WNH'T,

g is called the gain factor

36




Even Einstein was allowed a fudge factor...

Cosmological Constant

~ 8nG

1
R,ul/ _ ERg,uV =+ Eg;u/ — C—4T,ul/7

37




1.
2.
3.

Advantages of the graph theory approach

T = pe B WNIH'T,

No meshing steps.
Freedom to discretize time t into any desired length.
Does not require matrix inversion; only matrix multiplication.

How to obtain ¢ and A?

38
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¢ and A are obtained in Step 2

Layers to follow

.
A Sy
# '] "h ."'
V. . T o Uy A -
.9 ¥ s =
57 \ -
r

Deposited
Layer
\
Nodes
Step 1- Convert the part into a set of discrete nodes Step 2- Network graph construction

Laser

Sintered Hatch / 1

Fused Layer

0.75

05

New Deposited Layer

025

« Heating a layer, hatch by hatch, Result as temperature matrix
- Diffusion of the heat through the part which shows the temperature
 Deposition of a new layer history of the part
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Obtaining the Laplacian Matrix (L)

Connect nodes with a radius of e mm
Layers to follow

S

Deposited
Layer

Step 2- Network graph construction

—_— — —_— — T
Find the Gaussian distance between nodes (xi_xj)(xi_xj
(Closer nodes have higher edge weights) wij = e o?

Similarity matrix

MM [y
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Obtaining Eigenvectors (¢) and Eigenvalues (A)

Similarity matrix S = [wij]

Degree matrix

ko j=m d, 0 0]
de= ) wy  DE[0 dp 0
Jj=1 I O 0 dM_

Sum each row of the Similarity matrix, and put it on the diagonal

Laplacian matrix

L & (D-S5)



Obtaining Eigenvectors (¢) and Eigenvalues (A)

Laplacian matrix

L & (D-25)
L,D and S are Matrices of real positive numbers
d, 0 0 1 Wip " WM
L: 0 dk O N w21 :wlz ...1-.. wZM
0 0 dy] W 1

Lo =Adp




Outline

« Part I: Verification of the graph theory approach

How does it compare to the known solutions and existing techniques?

— Graph Theory vs. exact analytical solution (Green’s Function)
— Graph Theory vs. finite element for AM

« Experimental validation of the graph theory approach

Part Il: Application (Digital Twin)

* Conclusions and future work

43
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Green’s Functions Analysis

Exact Analytics solution to the heat equation in simple shaped bodies.

Cole, K. D., Beck, J. V., Haji-Sheikh, A., and Litkouhi, B., 2010,
Heat Conduction Using Green'’s Functions, CRC Press, Boca Raton, FL.

Cole, K. D.,2018, “Parallelepiped with Insulated Boundaries and Piecewise Initial
Condition” EXACT Analytical Conduction Toolbox, Oct. 18. Link

u

Exact Analytical Conduction Toolbox (EXACT) at UNL
www. exact.unl.edu


http://exact.unl.edu/exact/contents/display.php?eqtype=Heat%20Equation,%20Cartesian,%20Three%20Dimensional&&name=Parallelepiped%20with%20insulated%20boundaries%20and%20piecewise%20initial%20condition.

. . . . 45
Comparison with Exact Analytical Solution

Quantify the accuracy of graph theory diffusion with Green’s Function analytical solution

Insulated N Point 2 ®
i — 1 v
boundaries Y \\\\\ = —Point 1
@:ﬁ - Py %o.a —Point 2
U \ 2
Point1 N\ E06}
\ ¢ \ g°
\ N H
E:\ § 204
Heated Area % § =
§ © 0.2
\ A E
\! > 0 |
2 T\ Z 0 0.2 0.4
k Origin Ti
, Ime
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Graph Theory vs. Green’s Function Solution

Graph theory captures the physics of heat transfer in an insulated cuboid

Normalized
Temperature

O
o))

©
~

O
N

o

= = Graph Theory at point 1
= = Graph Theory at point 2
- Analytical at point 1
- Analytical at point 2

0 0.2 0.4

Time

Number of nodes

computational time

Mean Absolute

[seconds] Error
80 0.97 10%
800 1.55 7%
4,000 38.14 5%
8,000 236.64 3% N




Graph
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Theory Comparison with Finite Element Analysis

Graph theory solution converges much faster than FE analysis for a fixed error level

Initial cool zone (Normalized temperature equal to 0)

»

»

Initial heated zone (Normalized temperature equal to 1)
Step 1- Mesh generation Step 2- Define boundary condition and heated zone
observation point 2 {0.75, 0.75,0.75}

RN

observation point 1 {0.25, 0.25, 0.25}
Step 3- Heat diffusion to steady state

Error

Graph theoretic approach time (sec.) FE analysis time (sec.)

~ 5%

237 3,540

4 mins 59 mins



Outline

Motivation

Part 1: Graph theory approach for thermal modeling in AM

How does it compare to the commercial solution?

— Graph Theory vs. finite element vs. Netfabb for AM

Experimental validation
Part 2: Digital Twin Application

Conclusions and future work

48
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Effect of Part Geometry on Heat Flux

Two different part geometry studied in the context of LPBF.

2
e

C-Shaped Part Modified C-Shaped part
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Graph theory converges to similar trends as FE.

Normalized Temperature

o o o
~

o

15
10
]
T1 Zoomed-In

_________ === Finite Element - - 1
T1 | 1 i —-—Finite Element| |
Graph Theory. | 4 4 |==Grapn Theory I
| 0.8F 3 :

r
. I :% H ||
o i I 0.6 .! ii 3 |
Sensor Location 10 mm I |i It I
| 0.4} 1 :
: 1 |
I 021N 1 [
| I
| 0 i i I
I 100 200 300:
__________ | I :_ (c) Time Steps |
200 400 600 800 e

Time Steps One layer consists of 4 hatches

Graph theory captures heat accumulation in the
overhang region of the C-shaped part.

20

® Sensorlocation
#® Hatch peak
—>» Laser path



Graph theory captures the effect of change in geometry.

© 1 === C Finite Elerment —-="Finite Element| |
5 | —Graph Theory ——Graph Theory | |
-Ej' 0.8 I | 1 7 :
o |
3 | |
£ 06 | 1
l_ :::' & _|T : I
8 04 H LA |
N ' |
© One layer consists |
g 0.2 of 4 hatches 1]
2 N T1 (Zoomed in) :
| i i |

0 200 400 600 800
TimeSteps |l |
Graph theory predicts the heat diffusion facilitated by supports.



Graph theory converges to similar trends as commercial software.

8% 8,000 41 min

Graph Theory Netfabb

po)
)
o
® 5
- B
({) o
© z
yo!
)
o
®©
~
0
O
go!
@
o
S| N

Error Total number of nodes Graph theory FE analysis time

(SMAPE) approach time Y
16% 1,000 0.5 min T
10% 5,000 18 min min

(2,000 elemnts)
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Conclusion from Verification with FE

Graph theory simulates the thermal field with error
less-than 10% and within 1/10% of time of FE.

53




Outline

« Experimental validation of the graph theory approach

How does it stand up to the “real world”

Part II: Application (Digital Twin)

* Conclusions and future work

54
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& Imperial College

=3P London

The experimental data of this study are provided by
Dr. Paul Hooper at Imperial College, London

20

60
10

42°

2" ®200 mm x 125 mm

Williams, R., Piglione, A., Ronneberg, T., Pham, M. S., Davis, C. M. and Hooper, P. A., 2019, "In-situ thermography for laser powder
bed fusion: effects of layer temperature on porosity, microstructure and mechanical properties", Additive Manufacturing, In Press N
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Experimental Setup

A thermal camera is used to measure the surface temperature on the top surface.

Thermal camera is calibrated offline using a black-body cavity method.

Scanning Optics

LWIR Camera

20

Recoater

60
10

42°

2

Build 2

Build 1 (Inverted Cone)
(Cylinder)

. 316L Stainless Steel Material
Laser Powder Bed Fusion (LPBF) Laser power: 200 W

Layer thickness: 50 um
point distance: 40 um, exposure time: 50 us



The first two test parts have a simple geometry
Even coarse FE analysis will perform well.

57
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Cylinder is built in three phases to induce change in the surface temperature.

Phase 1: Print 9 cylinders (dia. 8 mm, L = 60 mm).

Phase 2: Print only the middle cylinder.
Phase 3: Print all 9 cylinders again.

1600 1600

1400 1400

1200 1200

1000 1000

800 800

600 600

400 400

Phase 2

Phase 1

Powder

Change in the build plan causes variation in the inter-layer cooling time (ILCT).

60 mm

[

1600

1400

1200

1000

800

600

400

<




S

urface temperature is a function of interlayer cooling time (ILCT).

900

800

N
o
o

o)
o
o

Temperature (K)

400 |

300

600 |

Build all nine cylinders

Top surface temperature for
1200 layers (171 minutes build).

Phase 1
ILCT=10s

1 W
|

Increase in ILCT linked to decrease in surface temperature

Layers

NI



60
Graph Theoretic Thermal Modeling in AM

Edges

Nodes

Step 1- Convert the part into
a set of discrete nodes

Super Layer Fused Layer Diffusion

* Deposition of super layers
* Diffusion of the heat through the part

Step 4- Obtaining the result



Simulating the deposition of multiple layers
(metalayers/superlayers) favors FE analysis.

61
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Close match of graph theory and FE predictions.

900 ,
m— E xperiment
m—EA (SLT = 0.3 mm)
800 |I= =Graph Theory (SLT = 0.3 mm)

\I
o
o

Temperature (K)
3
o

500

400 f

300 . . . . .

0 200 400 600 800 1000
Layer

Actual Build Time 171 minutes
Super Layer Thickness 0.3 mm 0.5 mm 0.3 mm 0.5 mm
Computation Time 34 minutes 22 minutes |27 minutes 15 minutes
MAPE 8% 18 % 6 % 14 %
RMSE (Kelvin, K) 33.8 48.1 14.5 33.8

Graph theory converges faster than FE, and has slightly smaller error. N



Build 2 (Inverted Cone)

63

a0

100

250

300

Frame 009002 t=00:02:30.03

Inverted cone e
top surface

1 1400

1 1200

1000

800

600

Build time: 51 minutes 400
50 100 150 200 250
X (pixels)

Temperature (K)
o
o
o

Both surface temperature interlayer cooling time increase during the build.

Build Height (mm)

25 5 75 10
e ——
Y
e‘ )
g=

point of the IR camera

600 f
400
200 A A A A
0 50 100 150 200
Layer
Build Height (mm)
25 5 7.5 10
17 r - - -
3 16

Inter-Layer Cooling Time (S

-
[8)]

e . Y.
SN W s

-
o

©

0 50 100 150 200

Layer



Change in surface temperature leads to
microstructural heterogeneity and flaws.

Need to adapt ILCT and processing conditions to avoid flaws.

/

s ooy |

75 pimi :
TN S N




65

Close match of graph theory and FE predictions.

1600

[ xperiment
= FEA (SLT = 0.2 mm)
1400 |=====Graph Theory (SLT = 0.2 mm)

—~ 1200
<
o)
é 1000 f
©
© gooF T T T T T
g— Upper calibration
@ point of the IR
600 camera
400 f
200 'l 'l 'l 'l
0 50 100 150 200
Layer
Actual Build Time 53 minutes Finite Element Graph Theory
Super Layer Thickness 0.2 mm 0.3 mm 0.2 mm 0.3 mm
Computation Time 54 minutes 48 minutes 41 minutes 35 minutes
MAPE 9 % | 14 % 8 % | 9%
RMSE (Kelvin, K) 37.7 73.0 26.0 35.4
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Qutcome

Graph theory simulates the thermal heat field within error less than 10% of
experimental data, and is about 25% faster than coarse FEA.
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Experimental Validation with a Large Part

1600

1400

1200

1000

800

600

8 inch-wide, 1.5-inch high
316L Stainless steel part
16-hour build time.

400

Video of Infrared Thermal Images

B Imperial College N
4&JP London




100

120

140

160

180

200

220

240

68

Surface temperature varies due to change in cooling time and surface area.

40 60 80 100 120 140 160 180 200 220

40 60 80 100 120 140 160 180 200 220

800

40 60 80 100

0 140 160 180 200 220

= E xperiment

Temperature (K)

N
o
(@)

(©))
o

o)
o

o)

200

400
Layer

600

40 60 80 100 120 140 160 180 200 220

120

40 60 80 100 120 140 160 180 200 220

I\



Two simulation strategies to reduce computation burden

Strateqy 1 Strateqy 2

Radial slice Horizontal Slice

69




70

Graph theory scales to large part geometries

Graph theory converges with error less than 10% and within 10% of the build time

Computation Time: 35 min.
Part build Time: 16 hours
Mean Absolute Error: 7%

RMS error < 30K

800 T T T T i T
750 | 1
700 |
3
o .
3650 Observation
©
o)
3
o 600 . i
= Number|Mean Abs.| RMS Time
of Nodes| Error (%) |Error (K) (min)
9,600 7.71 27.58 34
550 6,400 9.32 31.84 13
3,200 16.43 47.21 7
=Z¥Fpgf;noe0n;odes)
500 = = =GT (6,400 nodes) [T
: Llayel" . e GT (3,200Inodes)
0 100 200 300 400 500 600

Temperature (K)

Mean Abs.| RMS Time 7
Error (%) |Error (K)| (min)
39.54| 114.94 69
15.89 61.29 74
7.62] 24.58 83
I E xperiment
seenennns GT (Slice Width = 8mm)
= = =@T (Slice Width = 5mm) | =
(5T (Slice Width = 4mm)
0 400 500

Computation Time: 80 min.
Part build Time: 16 hours
Mean Absolute Error: 8%
RMS error < 30K

T

Observation

600 N



Outline

Part Il: Application (Digital Twin)
So what — who cares about thermal simulations?

 Conclusions and future work
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nr NIST

Experimental data was generated at
NIST by Dr. Brandon Lane, and
Mississippi State University by Dr. Linkan Bian

A.C. Gaikwad, R. Yavari, M. Montazeri, K. Cole, L. Bian, P. Rao,

Toward the Digital Twin in Metal Additive Manufacturing — Integrating Thermal Simulations, Sensing,
and Analytics to Detect Process Faults, IISE Transactions (Accepted)
10.1080/24725854.2019.1701753



https://www.tandfonline.com/doi/full/10.1080/24725854.2019.1701753

Directed Energy Deposition (DED)
Direct Material Deposition (DMD)
Laser Engineered Net Shaping (LENS)

ISO/ASTM 52900:2015 Source: Optomec



Previous work in the Digital Twin

G.L. Knapp, T. Mukherjee, J.S. Zuback, H.L. Wei, T.A. Palmer, A. De, T. DebRoy, Building blocks for a digital
twin of additive manufacturing, Acta Materialia, Volume 135, 2017.

T. DebRoy, W. Zhang, J. Turner, S.S. Babu, Building digital twins of 3D printing machines, Scripta Materialia,
Volume 135, 2017.
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Objective and Hypothesis

» Predict the instantaneous spatiotemporal temperature distribution with graph-theory
« Combine with in-process sensor data to monitor the process condition.

Sensor
data and Mechanistic

Learning

Hypothesis: Improved defect prediction accuracy



Digital Twin — A Gray-Box Model 76

White-box model Grey-box model Black-box model
Deterministic equations o d
J CUEC
Differential equations Stochastic models
Detailed sub-models |[—> Physical knowledge Matrix models
Physical knowledge Empirical knowledge

Ability to accommodate process

>

Minimum uncertainty (variation) Maximum
< Level of physical insight into a
Maximurm complex dynamic system Minimum

IN(
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Test Artifact

Single track thin wall part with Post-process characterization with
T|6AI4VOptomec LENS 750 o X-ray computed tomography

B Ny N,

7 0.508 mm

Power: 300 W Scan Speed: 12.7 mm/s'
Layer Thickness: 0.508 mm
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A pyrometer and IR camera is integrated into the DED machine.

* Co-axial dual-wavelength pyrometer
* Short-wave infrared (SWIR) camera

Oriented at approximately 45° to the table

Pyrometer

Infrared Sensor

Thin Wall

304 mm
m 295 mm
a) Isometric View b) Side View
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Change in the melt pool characteristics is related to the quality of the part.

Two-color pyrometer measurements of the meltpool temperature distribution.

1900
1850

1800

- 41750

- 11700

- 11650

- 11600

1550

1500

1450

1400

Temperature °C

SEM Measurements



30
Block-by-block regime is adopted to simulate the thin-wall

Same strategy can be used to simulate Wire-DED at Oak Ridge.

Inactive Block

30 -

25

20 -

15

10

5 -

Layer
Thicknes

0 .l
50

40 60

Hatch " Block Length . 40
Thickness 10 20



Normalized Temperature

Temperature reading observed on Layer 7
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o

© ©
IN o

o
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Comparison of Experimental and Simulation Data

1

There is a high correlation between simulated part-level
temperature and experimental meltpool temperature data.

—Experiment
----- Simulation

Temperature
distribution
observed on

layer 7

Graph theory simulation

8 16 24 32
Layer number

Simulation Experimental
images images
Layer 50
Layer 40
Layer 30
Layer 20
Layer 10
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Combining Simulation and Sensor Data

Part-level Simulation Ground Truth: XCT

Experimental Data
Meltpool Images

« Extract the mean, standard deviation of area of each melt pool image where
pixel values are above 1600 °C.

« Extract the mean, standard deviation of the simulated temperature in the
corresponding area of the part.

» Use X-ray CT data to label locations with flaw size larger than 100 ym.



Prediction of Porosity

33

The digital twin predicts the occurrence of porosity with higher
accuracy in comparison to individual sensor and simulation data.

Data

Input features

F-Score

Pyrometer data

mean, standard deviation of meltpool area.

81.6% (3.2%)

Simulation data

mean, standard deviation of temperature readings.

82.9% (2.7%)

Digital Twin:
Pyrometer +
Simulation data

mean, standard deviation of pyrometer readings.
+

mean, standard deviation of temperature readings.

91.0% (1.2%)




Outline

* Conclusions and future work
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Graph theory is shown to be faster than high-resolution FE analysis

Graph theory simulates the thermal field with error
within 10% and in 1/10%" of time of FE.

85

C-shaped

C-shaped with Support

FE-analysis Graph Theory

Netfabb

\

EEEE

0.25

7777777778
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Graph theory is faster than coarse-resolution FE analysis.

Graph theory simulates the thermal heat field with error less than 10% of experimental
data, and about 25% faster than FEA Test parts have a simple geometry.

900 . T 1600 .
Experiment — Experiment
== FEA (SLT = 0.3 mm) me FEA (SLT = 0.2 mm)

800 [—_=Graph Theory (SLT = 0.3 mm) 1 1400 |=——Graph Theory (SLT = 0.2 mm)
— ~ 1200 F
X 700 <
© o)
§ § 1000
®© 600 ©
S “é 800 |
=
© 500 0]
- = 600}

400 200 b

300 L L L L L 200 1 'l L Il

0 200 400 600 800 1000 0 o0 100 150 200
Layer Layer



Graph theory scales to large part geometry.

87
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Error =10% to 15% of experimental data, and
within 1/20™ of the build time for a large part.

Computation Time: 37 min.
MAPE: 10.8%
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Thermal simulations combined with sensor data 88

leads to fast prediction

The digital twin predicts the occurrence of porosity with higher
accuracy in comparison to individual sensor and simulation data.

Data

Input features

F-Score

Pyrometer data

mean, standard deviation of meltpool area.

81.6% (3.2%)

Simulation data

mean, standard deviation of temperature readings.

82.9% (2.7%)

Digital Twin:
Pyrometer +
Simulation data

mean, standard deviation of pyrometer readings.
+

mean, standard deviation of temperature readings.

91.0% (1.2%)




Outline

e Oak Ridge + UNL — ° Opportunities
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Collaboration Opportunities with Oakridge — 00

Computational Microstructure
Materlal Science Modeling

Functional

Mechanical
Properties

Materials &
Properties

Optimization
Distortion and Parameter and
Cracking Predict Tool Path Planning
Residual Process
Geometric S\t/l;/esses & Optimization Physics-based
Integrity arping Process Planning
Thermal
History
Adaptive Predict : Shape Orientation
Control Microstructur el BT Supports
Placement,
e, Alloy Orientation "
Feed-forwar Phases, and & Supports: Topology
Control Defects : Optimization
Sensing,
Process
Monitoring
Machine\ & Control / Defect

Learning Detection
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Three “right now” areas for Collaboration with Oakridge

Commercialization of the graph theory approach
Thermal Modeling of Wire DED: Dr. Andrzej Nycz.

Monitoring, Analytics, and Defect Detection in AM and Manufacturing.
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Opportunities for Commercialization

Optimize graph theory approach for parallel computation
Algorithm is currently implemented in Matlab (single core processing)
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Validation with Directed Energy Deposition Experiments

“Under construction; beware graduate students at work”
Total of 62 layers of titanium deposited.
Build Time 26 minutes Computation time 7 minutes

Side View A
1S
11.2 mm <
v
X g
3.25 mmJ N
78 mm >
220
. Experiment
200 | Prediction
25+ | ”““]“J““’“l“
Zﬂh 160 | ‘ [l '””“’J»“JMM.NM M
__ 1401 el
S
h Q 120
15 §
100
Wl 80
60 |
5 -
N @ .
20 : ' ' ' I | I
DD 10 20 30 40 50 60 70 8O0 90 100 0 200 400 600 800 1000 1200 1400 1600

Time (s)

Data from: Heigel, J., Michaleris, P, and Reutzel, T. Thermo-mechanical model development and validation of directed energy
deposition additive manufacturing of Ti—6Al-4V, Additive Manufacturing Volume 5, January 2015, Pages 9-19



Sensing and Machine Learning for Defect Detection in AM

'~ PennState
® ¥ Applied Research

Laboratory

j Lawrence
u'. OAK . Livermore
The l;;:;;;gof RIDGE Natlonal
Nottingham National Laboratory Laboratory
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25+ Publications in AM Monitoring (LPBF, DED, AJP, Binder Jetting, FFF),

https://engineering.unl.edu/mme/faculty/prahalada-rao/

M. Montazeri, A. Nassar. C. Stutzman, P. Rao, Heterogeneous Sensor-based Condition Monitoring in Directed Energy
Deposition, Additive Manufacturing, (Accepted, In-press). doi.org/10.1016/j.addma.2019.100916

M. Montazeri, A. Nassar, A. Dunbar, P. Rao, In-Process Monitoring of Porosity in Additive Manufacturing Using Optical Emission
Spectroscopy Signals, IISE Transactions (Manufacturing and Design), 2019, Accepted, In-Press (Published Online). doi:
0.1080/24725854.2019.1659525

M. Montazeri, R. Yavari, P. Rao, P. Boulware. In-process Monitoring of Material Cross-Contamination Defects in Laser Powder
Bed Fusion. ASME Transactions, Journal of Manufacturing Science and Engineering, 140(11), 111001-20, 2018. doi:
10.1115/1.4040543

J. Williams, P. Dryburgh, A. Clare, P. Rao, A. Samal, Defect Detection and Monitoring in Metal Additive Manufactured Parts
through Deep Learning of Spatially Resolved Acoustic Spectroscopy Signals. ASTM Journal of Smart and Sustainable
Manufacturing, Vol. 2(1), 204-226, 2018. doi/10.1520/SSMS20180035

F. Imani, A. Gaikwad?, M. Montazeri®, P. Rao, H. Yang, E. Reutzel. Process Mapping and In-Process Monitoring of Porosity in
Laser Powder Bed Fusion Using Layerwise Optical Imaging. ASME Transactions, Journal of Manufacturing Science and
Engineering, 140(10), 101009-23, 2018. doi: 10.1115/1.4040615

J. Liu, C. Liu, Y. Bai, Z. Kong, P. Rao, and C. Williams. Layer-wise Spatial Modeling of Porosity in Additive Manufacturing. IISE
Transactions, (Additive Manufacturing Special Issue), Accepted, In-Press, 2018. Article Highlighted in January 2019 issue of the
Industrial and Systems Engineer Magazine.doi:/10.1080/24725854.2018.1478169

F. Imani, B. Yao, R. Chen, P. Rao, H. Yang, Joint Multifractal and Lacunarity Analysis of Image Profiles for Manufacturing
Quality Control (Technical Brief), ASME Transactions, Journal of Manufacturing Science and Engineering, 141(4), 044501-08,
2018.doi: 10.1115/1.4042579.

J. Lombardi, R. Salary, D. Weerawarne, P. Rao, M. Poliks, Image-Based Closed-Loop Control of Aerosol Jet Printing Using
Classical Control Methods, ASME Transactions, Journal of Manufacturing Science and Engineering, 141(7), 071011-20, 2019.
doi: 10.1115/1.4043659

Have Data will Crunch
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http://manufacturingscience.asmedigitalcollection.asme.org/article.aspx?articleid=2685298
https://www.astm.org/DIGITAL_LIBRARY/JOURNALS/SSMS/PAGES/SSMS20180035.htm
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Detecting Porosity from In-Situ Sensor Data in Directed Energy Deposition (DED)

Sf""’l‘e & Techl\o\oh\

M. Montazeril, C. B. Stutzman?, A. R. Nassar?, P. Rao'"

1Laboratory for Advanced Manufacturing Processes and Sensing, Mechanical and Materials Engineering (MZ2E), University of Nebraska-Lincoln.
2 Applied Research Laboratory, Pennsylvania State University
* Contact: rao@unl.edu, Assistant Professor, M2E.

Objective: Detect the onset of defects, such as porosity, in additively
manufactured metal parts using data acquired from two sensors, namely, a
spectrometer and a visible spectrum optical camera.

Hypothesis: The process signatures derived from our graph theoretic analysis
of sensor data predicts lack-of-fusion porosity with high accuracy

Motivation: Defects in metal AM processes, such as DED, can occur despite
offline empirical optimization

Layer 9 Layer 13

Layer 1

Layer 2

Layer 6

3 mm

Systematic flaw  Random flaw

Occurrence of Systematic and random flaws in different
layers of one part under the same printing conditions

Experimental Test Coupons

Powder
Delivery
Nozzle

Test Coupon Dimension: 15 mm x 15 mm X 10 mm (LXWxH).
Metal Powder: titanium alloy Ti-6Al-4V.

Fixed Printing Parameters: print speed (10.6 mm/sec), layer
height (0.254 mm), hatch spacing (1 mm).

Laser Power (P, Watt)

Offline Analysis of Porosity fr

X-ray Images

Image processing steps for extraction of pores from X-ray Computed Tomography (XCT) images.

()

ri

inal XCT

Laser
Focusing
Optic

Substrate

300 425 475

Pattern (H)

Hatch

Parallel Cross Parallel Cross Parallel Cross

Powder Flow Rate (F, g/min)

Representative Test Coupon

Spectrometer
Fiber

Cropped XCT

Extracted Pores

L R.otaf(e_q XCT

S e B S 2

A e e e e

=)
S

)
S

Parallel C
(cﬂfa%ch pattern

300 425 475 2 3 4
(a) Laser Power) (b) Powder Flow Rate

Online Prediction of Porosity from Sensor Data

Our graph theory approach predicts the severity level of
pores from in-process sensor data with 85% accuracy.

Confusion Matrix for two-Level Classification of Pore Severity

True Level of Predicted Size of the Pore

Pore Severity Low Severity High Severity
N2 ( Pores Size < 50 um) ( Pores Size > 50 um)

Low 20 (out of 26) 6 (False Alarm)

High 12 (Failing to detect) 62 (out of 74)

Confusion Matrix for Three-Level Classification of Pore Severity

Predicted Size of the Pore
True Level of
Low Severity Medium Severity

Pore Severity High Severity
(Pore Size <50 (50 um < Pore
N (Pore Size > 200 um)
um) Size < 200 um)
Low 20 (out of 26) 0 6
Medium 4 21 (out of 37) 12

High 6 9 22 (out of 37)




Detecting Pore Formation in Laser Powder Bed Fusion Using In-Process Optical Emission Spectroscopy

-3 PennState
Applied Research

Laboratory

M. Montazeril, A. J. Dunbar?, A. R. Nassar2, P. Rao!"

1Mechanical and Materials Engineering, University of Nebraska-Lincoln.
2 Applied Research Laboratory, Pennsylvania State University

Objectives and Motivation

Identification and isolation of defects in terms of porosity level or severity
in laser powder bed fusion (L-PBF) using in-process multispectral sensor
data.

Schematic of the L-PBF process

Scanning Galvo-
Mirrors

Nd: YAG Laser
1070 nm

[

-8

Original XCT

‘ Focusing Lens Schematic of the Multispectral Sensor
)

Image Enhancement

: Quantification of Porosity

Edge Detection Edge Dilation

Powder
Roller \ Using the extracted porosity, a
= Part -8 lens dimensionless number (u) is calculated
Powder =520 nm L_J between 0 and 1, representative of three
Resenvolr \ ?f:"“fiit porosity characteristics namely size,
Excess prieaTRer number and distribution along the
I I Powder S ~c0.50 cylinder surface.
. Beamsplitter
Build Conditions 530nm & Laser beam Data Analysis and Results
Bandpass “3‘
. ) ) Optical *
Inconel 718 cylindrical parts that are 12 mm in Filter 1 T T ™ T—Actual
diameter and 6.6 mm in height are printed on a " 5 Esgz;‘i‘;d ’--”------Predicted
3D Systems ProX DMP 200 L-PBF machine under ) 3 08f Level *,
four conditions. 5 / “\ E’ e + i
) & >06f
Nominal Conditions: «,"9 B y UL
laser power (P) = 300 W, hatch spacing (H)= 50 um, Build Plate 140 mm g 04 )
laser scan velocity (V) = 2.5 m/s % : Measured
g + 110 ™ Porosity
Disc A Disc B Disc C Disc D ®02 o = F'°'('; ;‘CT |
(H-50%) (Nominal) (V-25%, H+50%) (V-25%) g !L i ’
- =z b - : qad 5 . ' E
' oI DiscA .| DiscB, | Disc | Disc,C
Deposited Layers (440 layers)
Q e Our graph theoretic machine learning approach predicts the exact
6 mm level of porosity with 90% accuracy using optical emission data.




E w, In-Process Detection of Material Contamination Defects in Laser Powder Bed Fusion

M.Montazeri!, R.Yavaril, P.Rao!", and P. Boulware?
N 1 Mechanical and Materials Engineering, University of Nebraska-Lincoln. 2Edison Welding Institute (EWI).

Publication: In-process Monitoring of Material Cross-Contamination Defects in Laser Powder Bed Fusion . ASME Transactions, 2018.
Funding: National Science Foundation (NSF), CMMI-1752069 (CAREER)

Objective and Motivation Sensor Data Acquisition

* Material contamination originates from poor quality control of the

. . : . Photodetector signal for Locations of Photodetector signal for
feedstock and residue from previous builds (Fig. 1) tungsten (W) contamination contamination  gyuminum (Al) contamination
* Contamination leads to decreased fatigue life and crack initiation.
L L L L L L
Objective. Develop and apply a spectral graph theoretic approach to detect
material contamination in real-time in LPBF using in-process sensor data. <2 T
Tungsten (W) Contamination Aluminum (Al) contamination :‘39 4 %
: ” £ - = || S >
W Tungsten ---~~._Meltpool s, 3
Particles = 2
~ £ ) i
g Bos
<

[
; :

10 20 30 40 50 60
Laser Operating Time (Second)

. ;T | : [ | 0

Laser Operating Time (Second)

. Fig. 4 photodetector signal associated with tungsten and aluminum contamination.
Fig. 1 Micrograph of Inconel 625 sample contaminated with w and Al. Photodetector signals were acquired at 10 KHz during scanning ( 1 data point/10 um).

Experimental Setup Data Analysis and Results

* Six levels of tungsten and aluminum contamination (L, — L¢) were intrndnced in|| « Convert the signal into its network graph equivalent, and extract spectral
se-paratehlnconel 625 samples (1;) x 1bo xh15 rtnm) : X-raydCT anfalys?s lmdlcates graph Fourier coefficients to track contamination (Fig. 5).
(Fig. 3) that contamlnants sprea .to ot .su sequent an REEVIQUSI IQYElo: * Spectral graph Fourier coefficients correctly locate the contaminated layer

* Photodetector signals were acquired during the build (Fig. 2). with statistical accuracy greater than 95%, and within 0.8 milliseconds (Fig. 6).

Scanning o One
Yb Laser . : = .
all o | Photodetector Signal =L S Fig6
. J— Focusing ey ?&‘L?;i’;’n ' 3 et Spectral

High-Speed Lens P = Particles i | P S graph
Camera g, L Photo-etector ¥ S ; s coefficients
Povder & ' 300-1100 nm o b o (red dots)
Recoater “\( ; B , _ ez overlaid on
hoe e L a : araph eI the X-Ray
Reservoir jj oveden) e . CT scan
I ‘ Flg 5. Convert the photodetector : - Bl match with
Powder Bed Metal Part Tl signal hatch-by-hatch into graph. contaminati
Fig. 2 Experimental Setup integrated Fig. 3 X-Ray CT scan of Inconel 625 Use the eigenvalues of the graph as on (white

with a coaxial photodetector sensor. sample contaminated with W particles. features for detecting defects. dots ).
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Appendix IlI

Procedure used to filter transients from IR Data.



Build 1 (Cylinder) Thermal Data

10

Raw IR camera measurements includes of several high and low peaks.

Time (Sec.)
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Raw IR camera measurements includes of several high and low peaks.
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Removing Transients from IR Data

@ : Laser is located at the pixel traced by the IR-camera images

‘ Laser ON

Powder

Laser is located at
the pixel traced in
the IR-camera
images.

1000
900

Temperature (K)

400

300 L.
2225

800
700
600 |
500

[

O

2230 2235 2240 2245

Time (Sec.)
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Removing Transients from IR Data

Inter-layer cooling time (ILCT): The time between successive scans, layer-to-layer.
Phase 2

Inter layer cooling time
-6 seconds

Phase 1

Inter layer cooling time
~10 seconds

2230 2240 2250
Time (Sec.)

Temperature (K)
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1000

800
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1 1 1
[E—E—D>E—>
1

r
I

0 5000 10000

Time (Sec.)

Phase 1: 10 seconds
Phase 2: 6 seconds
Phase 3: 10 seconds

1100 f
1000 f

700
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400

900
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Removing Transients from IR Data

@ : Recoater returns to back for powder

1000 <l>
Laser OFF E IR Camera ,’/-\A\ 900 |
/ AN —
IRecoater%\l é 300 |
\ l ! 9
Recoater -7 2 700}
direction _ ©
= 8 600 ,
e o g !
| . Recoater returnsto = 9007} |
. B || fetch powder and _ !
momentarily blocks 400 !
J 1 L the IR-camera 300 L

2225 2230 2235 2240 2245
Time (Sec.)
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Removing Transients from IR Data

@ : Recoater spreads powder for a new layer

Laser OFF

E IR Camera ,’ o

; <

NoZA
,Recoatér ‘

Recoater

direction
Recoater spreads
powder on a
new layer, and

momentarily
blocks the IR-
camera.

Temperature (K)

1000
900
800
700
600 |
500

300k

400 T\J

2225

2230 2235 2240 2245
Time (Sec.)
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Calibration of IR Camera Measurements

» Calibration function applied to convert the raw IR camera data to temperature values.
* IR camera was calibrated empirically for both solid and powder.

 AM part temperature was controlled using a cartridge heater.

e Absolute temperature trends captured using thermocouples embedded in a cavity.

(Tc1) h | y "
ercaieta | Aol Area of the thermsl —epermertiaas| a
control heater temperature Image used Tor Fit function . X
| \ ’ calibration | = = meme = ==t m .- = -
S i i i
= N a i
x _E_)(perl.me.nta.lData ....... o TEPEEPPEE -
1 1
< Recorded by TC2. g
................................ e e =
Q ;
= recorded
N AR NP SN SIS I i
[} camera.
Qo i
= ;
& ................................. | __________ —
1
i
‘ B Y e 3 fe- R s et i
Cartridge heater to control : : :
temperature 15 2 0 55 3.0

Mean Pixel Value x 1000
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Build 1 (Cylinder) Thermal Data

The temperature recorded at center pixel of the middle cylinder.
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3 hours build time.

Thermal data is filtered to remove IR transients. N



