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Detect AM part flaws using data from in-situ heterogeneous sensors



Outline

• Introduction

• Objective and Hypothesis

• Experimental Studies

• Methodology and Results

• Conclusions and Future Work

5



Outline

• Introduction

– Background

– Motivation

• Objective and Hypothesis

• Thermal Modeling using Graph Theory

• Experimental Studies and Results

• Conclusion and Future Work

6



Background
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Laser powder bed fusion (LPBF) additive manufacturing (AM) process



Motivation
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Only 2 out of 7 parts were built defect free

Can we build parts without having to print-and-pray?

Part quality inconsistency is major impediment in AM
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Objective and Hypothesis
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Develop a cascading artificial neural network (C-ANN) to fuse process signatures 
acquired from heterogeneous in-situ sensors, and subsequently identify defects

High speed 
video camera

Pyrometer

Acoustic emission sensor

Sensor Data Fusion

Detect Flaws



Rationale
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Chain a series of neural networks to make step-wise multiple predictions.
• Computationally sparse
• Can accommodate multiple types of data (image, time series)
• Physically interpretable
• Multiple Input – Multiple Output 



Outline

• Introduction

• Objective and Hypothesis

• Experimental Studies

• Methodology and Results

• Conclusions and Future Work

12



Experimental Setup
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Heterogeneous in-process sensors coaxial to the laser: video camera and pyrometer



Experimental Data
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Video camera frame rate: 20 kHz
• Frame size: 256 × 256 pixels
• Video camera is co-aligned with the laser.
• Number of frames per video (𝑁): 12 to 50 frames (depends on laser velocity)

Pyrometer sampling rate is 100 kHz (5 times faster than video camera frame rate)

Frame 1

Frame 2

Frame 𝑁

High speed video camera frames Pyrometer data

Laser location
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Yuan, Bodi, Gabriel M. Guss, Aaron C. Wilson, Stefan P. Hau‐Riege, Phillip J. DePond, Sara McMains, Manyalibo J. Matthews, and Brian Giera. 
"Machine‐Learning‐Based Monitoring of Laser Powder Bed Fusion." Advanced Materials Technologies (2018): 1800136.



Experimental Data Used in this Work
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10 video camera frames used per single track
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Laser location

Pyrometer data
Extracted pyrometer data

Below shown is an example of the data used from the sensors



Experimental Conditions
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• Laser power: 50 W to 375 W 
– Equal increments of 32.5 W (11 different laser power settings)

• Laser velocity: 100 mm/s to 400 mm/s
– Equal increments of 30 mm/s (11 different laser velocity settings)

• Layer thickness: ≈50 µm 

• Length of single track is 5 mm

5
 m

m

Develop and apply an algorithm to analyze heterogeneous 
sensor data fusion to monitor quality of single-tracks 

Yuan, Bodi, Gabriel M. Guss, Aaron C. Wilson, Stefan P. Hau‐Riege, Phillip J. DePond, Sara McMains, Manyalibo J. Matthews, and Brian Giera. 
"Machine‐Learning‐Based Monitoring of Laser Powder Bed Fusion." Advanced Materials Technologies (2018): 1800136.



Characterizing Single-Track Quality
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Quality related features are estimated from height maps

5
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m

Single Tracks deposited using LPBF 

Height maps of single-tracks



Characterizing Single-Track Quality
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Mean of width of single track (µ)

Thickness

Standard deviation of width of single track (𝜎)

Wave profile

Continuity of single track (𝛿)

2
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The following single-track quality related 
features are estimated from the height maps
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Statistical Feature Extraction from Sensor Data
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Pyrometer signal →mean, standard deviation, skewness, kurtosis

High speed video camera frames

Meltpool intensity

𝐼𝑎
𝑖 = 

𝑥=1

𝑀

𝐼𝑥

𝐼𝑎
𝑖 = Intensity of meltpool
𝐼𝑥= Intensity of a pixel in the meltpool
𝑀= number of pixels in the meltpool

Meltpool area

𝐴𝑎
𝑖 = 𝜋 × 𝐿𝑚𝑎𝑗𝑜𝑟 × 𝐿𝑚𝑖𝑛𝑜𝑟

𝐴𝑎
𝑖 = Area of meltpool

𝐿𝑚𝑎𝑗𝑜𝑟= Major axis length

𝐿𝑚𝑖𝑛𝑜𝑟= Minor axis length

𝑑𝑦

Meltpool circularity

𝑐𝑖𝑟𝑐(𝜇)𝑎
𝑖 =

σ𝑦=1
𝐸 𝑑𝑦

𝐸

𝑐𝑖𝑟𝑐(𝜎)𝑎
𝑖 =

σ𝑦=1
𝐸 𝑑𝑦 − 𝑐𝑖𝑟𝑐(𝜇)𝑎

𝑖

𝐸



Cascading Artificial Neural Network (C-ANN)
21
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Below shown is the architecture of the cascading artificial neural network (C-ANN)
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Training data
1620 single-tracks

Validation data
180 single-tracks

Testing data
298 single-tracks

Ten-fold cross-validation is performed on the Training/Validation data set
Testing data is not seen by the trained network

Cascading Artificial Neural Network (C-ANN)

Each printing condition has approximately 17 single-tracks



High Speed Video Camera Features
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Effect of energy density (𝐸𝑑 , 𝐽/𝑚𝑚 ) applied to deposit 
single-tracks on meltpool area and meltpool intensity

Meltpool area and meltpool intensity increase with increasing 𝐸𝑑



Pyrometer Features
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Below shown is the effect of change in energy density applied to 
deposit single-tracks on meltpool intensity captured by pyrometer

Meltpool intensity captured by pyrometer increases with increasing 𝐸𝑑



Result: Cascading Artificial Neural Network
25

Methodology (sensor)
Global energy 

density (𝑬𝒅)

Single-track 

width (𝝁)

Consistency of single-

track width (𝝈)

Continuity of 

single-track

C-ANN (high speed 

video camera + 

pyrometer)

0.9657 0.8845 0.7726 0.7256

ANN (high speed video 

camera)
NA 0.7727 0.6571 0.6952

ANN (pyrometer) NA 0.8165 0.7154 0.6525

ANN (high speed video 

camera + pyrometer)
NA 0.8565 0.7423 0.6884

Deep learning CNN 

(high speed video 

camera) [1]

NA 0.93 0.73 NA

[1] Yuan, Bodi, Gabriel M. Guss, Aaron C. Wilson, Stefan P. Hau‐Riege, Phillip J. DePond, Sara McMains, Manyalibo J. 

Matthews, and Brian Giera. "Machine‐Learning‐Based Monitoring of Laser Powder Bed Fusion." Advanced Materials 

Technologies (2018): 1800136.

C-ANN performs better than algorithms with single sensor data
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Conclusion and Future Work

• Cascading-artificial neural network (C-ANN) is an approach 
for sensor data fusion 

– Predicts single track quality aspects with statistical fidelity exceeding 
data from a single sensor.

– Computationally tractable and interpretable compared to deep 
learning.

• Implement C-ANN for flaw detection, such as porosity and 
delamination.
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