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Goal

Flaw-free deposition of Stellite 21 wear coating on Inconel 718

No Preheat and High Power High Preheat and High PowerLow Preheat and Low Power

1 mm
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Objectives

1) Understand and explain the metallurgy and processing science of flaw formation.  

2) In-process detection and prevention of flaw formation

Flaw-free deposition of Stellite 21 wear coating on Inconel 718
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Directed Energy Deposition of Stellite 21

• Stellite is a cobalt-based ceramic material. 
Trademark of Kennametal.

• Application: Wear-resistant coating for parts 
operating in high-temperature conditions. 
E.g.,  automotive valves, machine gun 
barrels, and cutting tools. 

• Directed Energy Deposition (DED), allows 
cladding Stellite onto free-form surfaces, and 
apply a graded coating.
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Effects of Preheating

Brueckner, F., Lepski, D., Nowotny, S., Leyens, C., and Beyer, E., 2012, "Calculating the stress of multi-track formations in 

induction-assisted laser cladding," International Congress on Applications of Lasers & Electro-Optics, pp. 176-182.

Preheating reduces crack formation.

Laser cladding of Stellite 20 on Ck45 (carbon steel)
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Energy density is a key determinant of coating wear resistant

Stellite 6 coatings on cutting tools.

Traxel, Kellen D., and Amit Bandyopadhyay. “First Demonstration of Additive Manufacturing of Cutting Tools Using 
Directed Energy Deposition System: Stellite™-Based Cutting Tools.” Additive Manufacturing, vol. 25, 2019, pp. 460–
468., doi:10.1016/j.addma.2018.11.019.

Laser Power (P): 410 W
Scan Speed (V): 5.5 mm/sec
Hatch Spacing (H): 0.5 mm
Layer thickness (T): 0.5 mm

EV =
P

V × T × H
= 300

J

mm3

We used 225 and 280
𝐽

𝑚𝑚3 as starting points 

DED-based Stellite coating for cutting tool applications.
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Energy density is related to hardness and flaw formation

P = Laser Power [W]; V = Scan Rate [mm/s]; and D = Laser Spot Diameter [mm]

We used 30 and 40
J

mm2 as starting points

EA =
P

V × D

J

mm2

Low energy density correlated to higher micro-hardness, reduced particle erosion, but increase in flaws.

Raghuvir Singh, Damodar Kumar, S.K. Mishra, S.K. Tiwari, Laser cladding of Stellite 6 on stainless steel to enhance solid particle 

erosion and cavitation resistance, Surface and Coatings Technology, Volume 251, 2014, Pages 87-97,

ISSN 0257-8972, https://doi.org/10.1016/j.surfcoat.2014.04.008.
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Key Process Parameters

• Preheating

– Use the laser (suitable for small parts)

– Separate heating element (difficult to scale)

• Energy Density (Ev) 

– Laser Power and Velocity are machine constraints.

– Ev is more transferable

• Flow Rate

– Material is ejected from the meltpool

– Forced convection pushes material away

– Powder bounces from the substrate

EV =
P

V × T × H

J

mm3
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Experimental Plan

Inconel 718 coupon 

(37.5 mm  37.5 mm × 4.76 mm)

Coating thickness 12 layers 

(3 mm total coating, 0.250 mm layer height)

• Preheating begins with counterclockwise 

contour scan starting from the datum.

• Preheating (2 passes) is done with the laser

• Rectilinear scan path, no overlap.

• Start and end at the same point. 

• Laser turns off at the end of the scan.

Datum
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Experimental Plan

• Anti-clockwise contour between layers starting at the datum

• 12 deposition passes, rectilinear scan path, 95% overlap between hatches.

• Start and end at the same point. 

• Laser turns off at the end of the scan 
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Setting the Energy Density Parameters

𝐸𝑉 =
𝑃

𝑉×𝑇×𝐻
(J/mm3 )

Length scanned in one second (V)

Layer Thickness (T)

Hatch Spacing (H) 

(center-to-center  distance 

between adjacent hatches)

Pass #1
Pass #2

Process Step
Laser Power 

P [W]
Scan Speed V

[mm/s]
Hatch Spacing 

H [mm]

Layer 
Thickness T 

[mm]

Preheat 
(2 layers)

Varied
(NP, 300, 350, 400)

12 
0.7 

(laser spot size)
N/A

Print 
(12 layers)

Varied
(200, 225, 250, 275) 

10.6
(recommended)

0.38
(1.5 × T)

0.25

EV used in this experiment  200 
J

mm3 to 275 
J

mm3

Approximate printing time 60 minutes to 75 minutes
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Setting Flow Rate

Minimum Flow Rate = Volume of Material Deposited in one minute × Density

= 𝑉 × 𝑇 × 𝐻 𝜌
= 10.6 × 0.25 × 0.38 × 8.33 × 10−3

≈ 0.500 [g·s-1 ]

Minimum flow rate possible on the machine is 1.8 g.s-1
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Fixture and Setup

Inconel 718 clad K type 
Thermocouples (TC)

Tapped holes for 

clamping screws

Slots for thermocouple probes

Positioning screw

Plywood insulation

1.5”

Sample
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T
C

2.5 × 2.5 × 1.125 

Build plate fixture inside the Optomec LENS machine
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Fixture and Setup
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In-process Sensing Setup

Multiple sensors were instrumented on the machine, including a 

photodetector array, infrared thermal cameral, and a meltpool camera.

Photodetector Array

Meltpool Camera
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Evolutionary Optimization Experimental Plan

F
Preheat: N/A

Printing: 275 W (206 W)
Sample 4

P
Preheat: N/A

Printing: 225 W (150 W)
Sample 2

B

Preheat: 300 W (234 W)

Printing: 225 W (150 W)
Sample 5

G
Preheat: 300 W (234 W)

Printing: 275 W (206 W)
Sample 3

Q & J

Preheat: 400 W (345 W)

Printing: 225 W (150 W)
Samples 1 and 6

O
Preheat: 400 W (345 W)

Printing: 275 W (206 W)
Sample 8

I
Preheat: 350 W (290 W)

Printing: 250 W (180 W)
Sample 7

N
Preheat: 350 W (290 W)

Printing: 200 W (123 W)
Sample 9

Preheat Laser Power
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I 

Preheat: 350 W; 

Printing: 250 W

F 

Preheat: N/A; Printing: 275 W 

P

Preheat: N/A 

Printing: 225 W

B 

Preheat: 300 W 

Printing: 225 W

G

Preheat: 300 W; Printing: 275 W

Q 

Preheat: 400 W

Printing: 225 W         

O

Preheat: 400 W; Printing: 275 W)

N 

Preheat: 350 W

Printing: 200 W
Preheat

P
ri

n
ti
n
g
 L

a
s
e

r
P

o
w

e
r

Surface Optical Microscopy (As deposited)
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F 
Preheat: N/A; Printing: 275 W) 

P
Preheat: N/A; Printing: 225 W

B
Preheat: 300 W
Printing: 225 W

G
Preheat: 300 W; Printing: 275 W)

Q
Preheat: 400 W
Printing: 225 W

O(Preheat: 400 W; Printing: 275 W)

I  Preheat: 350 W; Printing: 250

N 
Preheat: 350 W
Printing: 200 W

Preheat Laser Power

D
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er

Surface SEM (as-deposited) 
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F
No Preheat

Printing: 275 W (206 W)

P
No Preheat

Printing: 225 W (150 W)

B
Preheat: 300 W (234 W)
Printing: 225 W (150 W)

G
Preheat: 300 W (234 W)
Printing: 275 W (206 W)

J & Q
Preheat: 400 W (345 W)
Printing: 225 W (150 W)

O
Preheat: 400 W (345 W)
Printing: 275 W (206 W)

I
Preheat: 350 W (290 W)

Printing: 250 W 

N
Preheat: 350 W (290 W)
Printing: 200 W (123 W)

Preheat
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ri
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er

Most Cracking Most Warping

N

G O

P

Crack
0.2 mm to

0.5 mm

I

J

Optimal Condition. Devoid of Cracks.

F

B
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Cracking is related to the scanning direction
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Cracks cross the scan vector at nearly 45°

F 
No Preheat

Printing: 275 W (206 W)

O
Preheat: 400 W (345 W)
Printing: 275 W (206 W)

45 °
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Samples Chosen for Microstructural Characterization

F
Preheat: N/A
Printing: 275 W 
Sample 4

P
Preheat: N/A
Printing: 225 W 
Sample 2

B
Preheat: 300 W 
Printing: 225 W 
Sample 5

G
Preheat: 300 W)
Printing: 275 W 
Sample 3

Q 
Preheat: 400 W
Printing: 225 W

Samples 1 and 6

O
Preheat: 400 W                   
Printing: 275 W 
Sample  8

I
Preheat: 350 W 
Printing: 250 W 
Sample 7

N
Preheat: 350 W 
Printing: 200 W 
Sample 9

Preheat Power
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er Scale bars= 500 µm
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Sample Preparation

• Small samples  ≈ 0.5 inch X 0.5 inch were cut by EDM 

• Top surface, and exposed cross sections of the coating were ground 
mechanically using 400, 600, 800,  and 1200 grit SiC sandpaper. 

• Polished using diamond paste (3, 1, and 0.5 microns)

• Etched with aqua regia (HCL:HNO3=3:1)
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Effect of Preheat and Deposition Laser Power on Crack Density

17% 
Reduction

21% 

Reduction 

100% Reduction in crack density

F (Preheat: N/A; Printing: 275 W O (Preheat: 400 W; Printing: 275 W) 
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34Dendritic microstructure observed on the surface 
as function of preheat & deposition laser power
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Surface Microstructure under SEM
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Longitudinal cross-section

Cracks penetrate as much as 100 – 500 μm into the coating
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37Transverse cross-section 
Penetration of the coating into the substrate increases 

with preheat and deposition laser power
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Surface and Cross-sectional Microstructure 

N  Preheat: 350 W Printing: 200 W



39Hypothesis
Preheating and low deposition power lead to smaller 

thermal gradients, and hence minimize cracking.
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X-Ray CT analysis of Surface and Interface

Interface

Surface

F Preheat: N/A Printing: 275 W
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Surface Hardness Testing

Sample Preheat
Preheat Laser 

(W)

Print Laser 

(W)
Remarks

Mean Hardness 

(HV)

Hardness 

σ

P N - 225 High Cracking 435.4 47.5

G Y 300 275 427.8 26.7

F N - 275 High Cracking 430.4 28.4
B Y 300 225 Less Cracking 419.4 24.5

O Y 400 275 High Warping 410 35.2

I Y 350 250 398.5 34.2

J Y 400 225 Less Cracking 438.4 16.9

Q Y 400 225 Less Cracking 541.8 39.9

N Y 350 200 Least Cracking 428.2 17.7

Vickers 

Hardness 

at 9 points
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No Preheat Preheat

Low Deposition Power 
(P=200W)

High Deposition Power 
(P=275W)

Medium Deposition Power 
(P=225)

Optical vs. SEM

(Optical vs. SEM)

(XCT Results:
Near interface vs. Near surface

(Optical vs. SEM)

XCT Results:
Near interface vs. Near surface

N

P Q

F G
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Ongoing Work

1. EDS to characterize change in elemental composition

2. Mechanical characterization (wear and 3-point bending)

3. Modeling and In-process Data Analytics


