08/14/2019 SFF 2019 0935 hrs Rm. 412

Using Heterogeneous In-process Sensor Data To Detect Lack-of-fusion Defects In Directed Energy Deposition of Titanium Alloy (Ti-6Al-4V) Parts

> Mohammad Montazeri Abdalla Nassar, Ph.D. Christopher Stutzman Prahalad Rao, Ph.D.

> > rao@unl.edu

Mechanical and Materials Engineering University of Nebraska-Lincoln

Acknowledgements

Penn State Funding

Office of Naval Research, under Contract No. N00014-11-1-0668 Air Force Research Laboratory through America Makes under agreement number FA8650-12-2-7230.

> <u>University of Nebraska-Funding</u> National Science Foundation (NSF). CMMI 1752069

The data for this work was generated at Penn State CIMP-3D by Dr. Abdalla Nassar, Mr. Chris Stutzman, and Dr. Edward Reutzel

Stutzman, C. B., Nassar, A. R., and Reutzel, E. W., 2018, "<u>Multi-Sensor Investigations of Optical Emissions and</u> <u>Their Relations to Directed Energy Deposition Processes and Quality</u>," Additive Manufacturing, 21, pp. 333–339.

Detect flaws in DED parts using sensor data

Using a mathematical approach called Kronecker Product of Graphs

The Problem

Ascertain the part quality layer-by-layer using in-process sensor data.

- Powder: Ti-6Al–4V
 - Spherical, argon argon-atomized powder with a D50 of 37.72 $\mu m.$
- Part Geometry: 15 mm ×15 mm ×10 mm (L × W × H)

Post-build image of one test coupon, scale is in cm

Fixed Printing Parameters (Optomec LENS MR-7)

Parameter	Value
Speed (mm/s)	10
Layer Spacing (mm)	0.254
Hatch Spacing (mm)	1
Hatches per Layer	12
Layer per sample	40
Laser beam Diameter	1.24 mm

XCT of Printed Part

		Laser Power (Watts)					
		300W 425W		475W			
Hatch Pattern		parallel	cross	parallel	cross	parallel	cross
/min)	2						
er Flow Rate (g,	3						
Powde	4						

7

Statistical Analysis of the Data

Laser power has the most significant effect

Printing Parameters

- Laser Power: 300 W
- Powder Flow Rate:
- Hatch Pattern:

4 g/min Parallel

Systematic flaw

Printing Parameters

- Laser Power: 475 W
- Powder Flow Rate: 4 g/min
- Hatch Pattern: Cross

Random flaw

There is a need to detect the onset of defects using in-process sensor data.

- Ocean optics HR2000 + UV-VIS-IR spectrometer
 - 20 ms integration time (50 Hz)
 - An optical fiber to couple light to the spectrometer
- Basler Pilot piA640-210gm CCD camera (Plume imaging)
 - 10 ms exposure time, 20 ms/frame (50 frames/second)
 - Coupled with a 430 nm band-pass filter

Photograph of the sensing setup at Penn State

One frame of plume camera

A Brief Primer to Optical Emission Spectroscopy

orbit. Emits a photon.

11

Sample Data

The key is to interpret the data in real-time as the part is being built.

Extract the Line to continuum (L2C) ratio around two separate line emission 430 nm line & 520 nm line emissions corresponding to Titanium I (Ti I) spectra

Real-world signals are complex and noise prone

It is hard to differentiate between porous and nonporous printed layers based on the raw signal.

Key Idea

Detect a flaw by comparing the signal being captured to a known state.

Approach

Step 1: Combine data from multiple sensors in the form of a network graph.

Store all the information about a layer in a matrix.

Approach

Step 1: Combine data from multiple sensors in the form of a network graph.

Step 2: Build a dictionary of signal patterns through the Kronecker product of graphs

- Compare the information from a layer with all the layers.
- This is a record of how all layers of a part relate to each other (dictionary)
- If a part is good, its dictionary will "look" different than that of a bad part.

Approach

Step 1: Combine data from multiple sensors in the form of a network graph.

Step 2: Build a dictionary of signal patterns through the Kronecker product of graphs

Step 3: Use the dictionary to predict the severity of lack-of-fusion

If given a signal (sentence), look up in which dictionary it belongs to.

Step 1: Combining the signals from each layer as a graph 19

Making a graph out of Matrix

$$X_{L} = \begin{bmatrix} S1_{1}^{L} & S2_{1}^{L} & S3_{1}^{L} \\ S1_{2}^{L} & S2_{2}^{L} & S3_{2}^{L} \\ \vdots & \vdots & \vdots \\ S1_{t}^{L} & S2_{t}^{L} & S3_{2}^{L} \\ S1_{N}^{L} & S2_{N}^{L} & S3_{N}^{L} \end{bmatrix}$$

Pick two rows from X_L

$$\vec{r}_a^L = \begin{bmatrix} S1_a^L & S2_a^L & S3_a^L \end{bmatrix} \quad \vec{r}_b^L = \begin{bmatrix} S1_b^L & S2_b^L & S3_b^L \end{bmatrix}$$

Obtain the difference between the two rows

$$w_{ab}^{L} = (\vec{r}_{a}^{L} - \vec{r}_{b}^{L})C^{-1}(\vec{r}_{a}^{L} - \vec{r}_{b}^{L})^{\mathrm{T}}$$

Put the result in a matrix

$$G_L = [w_{ab}^L]$$

21

- Montazeri M, Yavari R, Rao P, Boulware P. In-Process Monitoring of Material Cross-Contamination Defects in Laser Powder Bed Fusion. ASME. J. Manuf. Sci. Eng. 2018;140(11):111001-111001-19. doi:10.1115/1.4040543. (Link)
- Montazeri M, Rao P. Sensor-Based Build Condition Monitoring in Laser Powder Bed Fusion Additive Manufacturing Process Using a Spectral Graph Theoretic Approach. ASME. J. Manuf. Sci. Eng. 2018;140(9):091002-091002-16. doi:10.1115/1.4040264. (Link)

We create a dictionary from the first few (30) layers for each part.

Each row of the dictionary tells us how a layer compares to the other layers.

Given,
$$X = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
; $Y = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$
 $\begin{bmatrix} X(1,1). Y & X(1,2). Y & X(1,3). \end{bmatrix}$

$$X \otimes Y = \begin{bmatrix} X(2,1), Y & X(2,2), Y & X(2,3), Y \\ X(3,1), Y & X(3,2), Y & X(3,3), Y \end{bmatrix}$$

$$X \otimes Y = \begin{bmatrix} 1 & \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} & 0 & \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} & 1 & \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \\ 0 & \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} & 0 & \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} & 1 & \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \\ 0 & \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} & 1 & \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} & 0 & \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$

Compare everything with everything.

Dictionary
$$D_{c} = \begin{bmatrix} k(G_{1}, G_{1}) & \cdots & k(G_{1}, G_{30}) \\ \vdots & \ddots & \vdots \\ k(G_{1}, G_{30}) & \cdots & k(G_{30}, G_{30}) \end{bmatrix}$$

$$k(G_i \otimes G_j) = \sum_{\substack{\forall rows, \\ columns}} \left(I - \gamma_{ij} (G_i \otimes G_j) \right)^{-1}$$

I is the identity matrix and $\gamma_{i,j}$ is the decay constant.

$$k(G_i \otimes G_j)$$
 is a number.

24

Low flaw probability Avg. Pores Length for each layer < 50 μm

Medium flaw probability 50 μm < Avg. Pore Length < 200 μm High flaw probability Avg. Pores Length > 200 μm

Predicting the layer quality on-the-fly

26

Convert the new signal into a sentence (< 2 seconds)

$$\theta_{new} = [k(G_{new} \otimes G_1) \dots k(G_{new} \otimes G_N)]$$

Use the trained model for predicting porosity (< 1 second)

	Predicted		
True Classes ↓	Low Porosity x < 50 μm	High Porosity x > 50 μm	
Low Porosity	40	5	
x < 50 μm	(out of 45)	(False Alarm)	
High Porosity	0	55	F-score ~ 95%
x > 50 μm	(Fail to detect)	(out of 55)	

	Predicted Classes			
True Classes ↓	Low Porosity x < 50 μm	Medium 50 μ< x<200 μm	High Por. x > 200 μm	
Low Porosity	40 (out of 45)	5 (False Alarm)	0	
Medium Por.	0 (Fail to detect)	25 (out of 41)	16	
High Por.	0 (Fail to detect)	0	14 (out of 14)	F-score ~ 75

Conclusion

- Ability to identify the severity of an error with 75% accuracy (3-level case), in less than 5 sec.
- Traditional statistical-feature-based machine learning approach had fidelity of 35% to 40%.

Advanced Manufacturing Processes and Sensing

Speaker Information

Reza Yavari Mechanical and Materials Engineering

University of Nebraska-Lincoln mrezayavari89@huskers.unl.edu

https://engineering.unl.edu/lamps/