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Detect flaws in DED parts using sensor data

Using a mathematical approach called 
Kronecker Product of Graphs



5The Problem

Ascertain the part quality layer-by-layer using in-process sensor data.

Ti-6-Al-4V
DED coupons

Meltpool plume images

Meltpool optical 
emission spectrum

Bad?



6Experimental Details

• Powder: Ti-6Al–4V

• Spherical, argon argon-atomized powder with a D50 of 37.72 μm.

• Part Geometry: 15 mm ×15 mm ×10 mm (L × W × H)

Post-build image of one test 
coupon, scale is in cm

Fixed Printing Parameters (Optomec LENS MR-7)

Parameter Value

Speed (mm/s) 10

Layer Spacing (mm) 0.254

Hatch Spacing (mm) 1

Hatches per Layer 12

Layer per sample 40

Laser beam Diameter 1.24 mm



7XCT of Printed Part
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8Statistical Analysis of the Data 

Laser power has the most significant effect



9Random flaws occur even under optimal conditions.

There is a need to detect the onset of defects using in-process sensor data.

Systematic flaw

Printing Parameters
• Laser Power: 300 W
• Powder Flow Rate: 4 g/min
• Hatch Pattern: Parallel

Random flaw

Printing Parameters
• Laser Power: 475 W
• Powder Flow Rate: 4 g/min
• Hatch Pattern: Cross



10Sensing Setup

• Ocean optics HR2000 + UV-VIS-IR spectrometer

• 20 ms integration time (50 Hz)

• An optical fiber to couple light to the spectrometer

• Basler Pilot piA640-210gm CCD camera (Plume imaging)
• 10 ms exposure time, 20 ms/frame (50 frames/second)

• Coupled with a 430 nm band-pass filter

One frame of 
plume camera

Photograph of the sensing setup at Penn State



11A Brief Primer to Optical Emission Spectroscopy

Laser

Substrate

Electron transitions to 
higher energy orbit by 
absorbing energy from 
the laser. ΔE

Electron transitions 
back to lower energy 
orbit. Emits a photon.

= h (c/λ) 



12Sample Data

Region with flaw
425 W, 2 g/min, Cross hatching

Region without flaw

Spectrometer output Plume camera output

The key is to interpret the data in real-time as the part is being built.



13Extracting Features from the spectrometer signature

Extract the Line to continuum (L2C) ratio around two separate line emission

430 nm line & 520 nm line emissions corresponding to Titanium I (Ti I) spectra

Spectrometer Read Out

Calibrated Ti I 
emission from NIST

430 nm 520 nm



14Real-world signals are complex and noise prone 

XCT for a defective layer XCT for a normal layer

Overlaid Plume Signals Overlaid Spectrometer Signals

It is hard to differentiate between porous and non-
porous printed layers based on the raw signal.
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Key Idea
Detect a flaw by comparing the signal being 

captured to a known state.



16Approach

Store all the information about a layer in a matrix.



17Approach

• Compare the information from a layer with all the layers. 
• This is a record of how all layers of a part relate to each other (dictionary)
• If a part is good, its dictionary will “look” different than that of a bad part.



18Approach

If given a signal (sentence), look up in which dictionary it belongs to. 



19Step 1: Combining the signals from each layer as a graph

𝑌𝐿𝑖𝑛𝑒 𝑡𝑜 𝐶𝑜𝑛𝑡𝑖𝑛𝑛𝑢𝑚 𝑅𝑎𝑡𝑖𝑜
520 𝑛𝑚

=
𝑆21

𝐿

⋮
𝑆2𝑁

𝐿
𝑍𝑃𝑙𝑢𝑚𝑒 𝐴𝑟𝑒𝑎 =

𝑆31
𝐿

⋮
𝑆3𝑁

𝐿

Graph (for layer n)

𝑋𝐿𝑖𝑛𝑒 𝑡𝑜 𝐶𝑜𝑛𝑡𝑖𝑛𝑛𝑢𝑚 𝑅𝑎𝑡𝑖𝑜
430 𝑛𝑚

=
𝑆11

𝐿

⋮
𝑆1𝑁

𝐿

𝑋𝐿 =

𝑆11
𝐿

𝑆12
𝐿

⋮
𝑆1𝑡

𝐿

𝑆21
𝐿

𝑆22
𝐿

⋮
𝑆2𝑡

𝐿

𝑆31
𝐿

𝑆32
𝐿

⋮
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𝐿

𝑆1𝑁
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20Making a graph out of Matrix

𝑋𝐿 =

𝑆11
𝐿

𝑆12
𝐿

⋮
𝑆1𝑡

𝐿

𝑆21
𝐿

𝑆22
𝐿

⋮
𝑆2𝑡

𝐿

𝑆31
𝐿

𝑆32
𝐿

⋮
𝑆32

𝐿

𝑆1𝑁
𝐿 𝑆2𝑁

𝐿 𝑆3𝑁
𝐿

Ԧ𝑟𝑎
𝐿 = 𝑆1𝑎

𝐿 𝑆2𝑎
𝐿 𝑆3𝑎

𝐿 Ԧ𝑟𝑏
𝐿 = 𝑆1𝑏

𝐿 𝑆2𝑏
𝐿 𝑆3𝑏

𝐿Pick two rows from 𝑋𝐿

𝑤𝑎𝑏
𝐿 = Ԧ𝑟𝑎

𝐿 − Ԧ𝑟𝑏
𝐿 𝐶−1 Ԧ𝑟𝑎

𝐿 − Ԧ𝑟𝑏
𝐿 TObtain the difference 

between the two rows

൧𝐺𝐿 = [𝑤𝑎𝑏
𝐿Put the result in a matrix

Graph (for layer n)



21More graph theory

• Montazeri M, Yavari R, Rao P, Boulware P. In-Process Monitoring of Material Cross-Contamination 
Defects in Laser Powder Bed Fusion. ASME. J. Manuf. Sci. Eng. 2018;140(11):111001-111001-19. 
doi:10.1115/1.4040543.  (Link)

• Montazeri M, Rao P. Sensor-Based Build Condition Monitoring in Laser Powder Bed Fusion Additive 
Manufacturing Process Using a Spectral Graph Theoretic Approach. ASME. J. Manuf. Sci. Eng. 
2018;140(9):091002-091002-16. doi:10.1115/1.4040264.  (Link)

http://manufacturingscience.asmedigitalcollection.asme.org/article.aspx?articleid=2685298
http://manufacturingscience.asmedigitalcollection.asme.org/article.aspx?articleid=2681693


22Step 2: Creating a dictionary of all features

Layer 1 (𝐺1) Layer 2(𝐺2) Layer 30 (𝐺30)

Set of graphs for a part 
under known conditions =

. . .

Dictionary Dc =
𝑘(𝐺1, 𝐺1) ⋯ 𝑘(𝐺1, 𝐺30)

⋮ ⋱ ⋮
𝑘(𝐺1, 𝐺30) ⋯ 𝑘(𝐺30, 𝐺30)

, , ,

We create a dictionary from the first few (30) layers for each part.

Each row of the dictionary tells us how a layer compares to the other layers.



23The Kronecker Product of Graphs

Given, 𝑋 =
1 0 1
0 0 1
0 1 0

; 𝑌 =
1 1
1 0

𝑋 ⊗ 𝑌 =

1.
1 1
1 0

0.
1 1
1 0

0.
1 1
1 0

0.
1 1
1 0

0.
1 1
1 0

1.
1 1
1 0

1.
1 1
1 0

1.
1 1
1 0

0.
1 1
1 0

Compare everything with everything.

𝑋⊗ 𝑌 =
𝑋 1,1 . 𝑌 𝑋 1,2 . 𝑌 𝑋 1,3 . 𝑌
𝑋 2,1 . 𝑌 𝑋 2,2 . 𝑌 𝑋 2,3 . 𝑌
𝑋 3,1 . 𝑌 𝑋 3,2 . 𝑌 𝑋 3,3 . 𝑌



24The Kronecker Product of Graphs

𝑘 𝐺𝑖 ⊗𝐺𝑗 = ෍
∀𝑟𝑜𝑤𝑠,
𝑐𝑜𝑙𝑢𝑚𝑛𝑠

I − 𝛾𝑖𝑗 𝐺𝑖 ⊗𝐺𝑗
−1

Dictionary Dc =
𝑘(𝐺1, 𝐺1) ⋯ 𝑘(𝐺1, 𝐺30)

⋮ ⋱ ⋮
𝑘(𝐺1, 𝐺30) ⋯ 𝑘(𝐺30, 𝐺30)

I is the identity matrix and 𝛾𝑖,𝑗 is the decay constant.

𝑘 𝐺𝑖 ⊗𝐺𝑗 is a number.



25Step 3: Predicting Porosity from the Online Sensor Data

A layer from the 
Dictionary Dc

Training of 
Classifier 
Algorithm

Low: Avg. Pores Length for each layer < 50 µm

Medium: 50 µm < Avg. Pores Length < 200 µm

High: Avg. Pores Length > 200 µm

High flaw probability
Avg. Pores Length > 200 µm

Medium flaw probability
50 µm < Avg. Pore Length < 200 µm

Low flaw probability
Avg. Pores Length for 

each layer < 50 µm

Row of Numbers

𝑘(𝐺𝑛, 𝐺1) ⋯𝑘(𝐺𝑛, 𝐺30)



26Predicting the layer quality on-the-fly

Graph 𝐺𝑛𝑒𝑤 (for layer n +1)

Convert a new signal for a new layer into a graph (< 0.5 sec)



27Predicting the layer quality on-the-fly

Convert the new signal into a sentence (< 2 seconds)

Sentence
Already Trained 

Classifier 
Algorithm

Low: Avg. Pores Length for each layer < 50 µm

Medium: 50 µm < Avg. Pores Length < 200 µm

High: Avg. Pores Length > 200 µm

Use the trained model for predicting porosity (< 1 second)

𝜃𝑛𝑒𝑤 = )𝑘(𝐺𝑛𝑒𝑤 ⊗𝐺1 … )𝑘(𝐺𝑛𝑒𝑤 ⊗𝐺𝑁



28Lack-of-fusion Detection Results

True Classes ↓

Predicted Classes

Low Porosity
x < 50 µm

Medium
50 µ< x<200 µm

High Por.
x > 200 µm

Low Porosity
40

(out of 45)
5

(False Alarm)
0

Medium Por.
0

(Fail to detect)
25

(out of 41)
16

High Por.
0

(Fail to detect)
0

14
(out of 14)

True Classes ↓

Predicted Classes

Low Porosity
x < 50 µm

High Porosity
x > 50 µm

Low Porosity
x < 50 µm

40
(out of 45)

5
(False Alarm)

High Porosity
x > 50 µm

0
(Fail to detect)

55
(out of 55)

F-score ~ 75%

F-score ~ 95%



29Conclusion

• Ability to identify the severity of an error with 75% accuracy 
(3-level case), in less than 5 sec.

• Traditional statistical-feature-based machine learning 
approach had fidelity of 35% to 40%. 
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