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Detect flaws in DED parts using sensor data

Using a mathematical approach called
Kronecker Product of Graphs



The Problem 5

Ascertain the part quality layer-by-layer using in-process sensor data.
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Experimental Details

* Powder: Ti-6Al-4V

* Spherical, argon argon-atomized powder with a D50 of 37.72 pum.

* Part Geometry: 15 mm x15 mm x10 mm (L x W x H)

Post-build image of one test
coupon, scale is in cm

Speed (mm/s)
Layer Spacing (mm)
Hatch Spacing (mm)
Hatches per Layer
Layer per sample

Laser beam Diameter

Fixed Printing Parameters (Optomec LENS MR-7)

Parameter Value
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XCT of Printed Part 7
Laser Power (Watts)
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Statistical Analysis of the Data 8
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Laser power has the most significant effect




Random flaws occur even under optimal conditions.

Printing Parameters
Laser Power:
Powder Flow Rate:
Hatch Pattern:

“er

Systematic flaw

300 W
4 g/min
Parallel

Printing Parameters

* Laser Power: 475 W
* Powder Flow Rate: 4 g/min
e Hatch Pattern: Cross

Random flaw

There is a need to detect the onset of defects using in-process sensor data.




Sensing Setup 10

* Ocean optics HR2000 + UV-VIS-IR spectrometer
e 20 ms integration time (50 Hz)
* An optical fiber to couple light to the spectrometer

* Basler Pilot piA640-210gm CCD camera (Plume imaging)
* 10 ms exposure time, 20 ms/frame (50 frames/second)

* Coupled with a 430 nm band-pass filter

Plume Camera
152 mm £30°

’ ~ Spectrometer

. ‘_! Fiber
109 mm 200
Y
Photograph of the sensing setup at Penn State One frame of
plume camera
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A Brief Primer to Optical Emission Spectroscopy 11
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Sample Data
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The key is to interpret the data in real-time as the part is being built.

425 W, 2 g/min, Cross hatching
Region with flaw
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Extracting Features from the spectrometer signature 13

Extract the Line to continuum (L2C) ratio around two separate line emission
430 nm line & 520 nm line emissions corresponding to Titanium | (Ti I) spectra
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Real-world signals are complex and noise prone 14

XCT for a defective layer XCT for a normal layer
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It is hard to differentiate between porous and non-
porous printed layers based on the raw signal.




Key ldea

Detect a flaw by comparing the signal being
captured to a known state.

15



Approach 16

Step 1: Combine data from multiple
sensors in the form of a network graph.

Optical emission spectrum Meltpool plume intensity
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Store all the information about a layer in a matrix.



Approach

17

Step 1: Combine data from multiple
sensors in the form of a network graph.

Step 2: Build a dictionary of
signal patterns through the
Kronecker product of graphs

Optical emission spectrum Meltpool plume intensity
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Graph of sensor data Graph of sensor
from of Layer 1 data from Layer N

Dictionary from the Kronecker Product

k(G ®Gy) -+ k(G @ Gy)
D, = s s
k(Gy ® G1) -+ k(Gy ® Gy)

 Compare the information from a layer with all the layers.

e This is arecord of how all layers of a part relate to each other (dictionary)
e |f apartisgood, its dictionary will “look” different than that of a bad part.



Approach 18

_ . Step 3. Use the
Step 2: Build a dictionary of dictionary to predict

signal patterns through the o
Kronecker product of graphs

Step 1: Combine data from multiple
sensors in the form of a network graph. severity  of

lack-of-fusion

Optical emission spectrum Meltpool plume intensity o —
15000 T [ 3{!‘ _ A
2 Q § : \
5 10000 | 2 g‘,- , I
S | L s by t
B 5000 ‘ 1 % 24 ‘
) J £ e
I dml 2
400 600 800 1000 B ‘E
[}
Wavelength (nm) Gl GN t; :
v
Graph of sensor data Graph of sensor g c
>3
Y from of Layer 1 data from Layer N o
430 nm Lin : 520 nm Line | 2 :
to Cgrr:t]imljuiw Npgql  gpleg3Ly  to Continuum Dictionary from the Kronecker Product 8_ .
Ratio Sli 52;' %); Ratio Q.
¥ = :z :z H:g k(G,®Gy) - k(G ® Gy) S §
" L L 2L D, = : : Vg v &%
s1k 2k 53l A
) k(Gy ® Gy) + k(Gy ® Gy) 2
S1%  s2k  S3k E

If given a signal (sentence), look up in which dictionary it belongs to.




Step 1: Combining the signals from each layer as a graph 19
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Making a graph out of Matrix 20
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Obtain the difference
between the two rows

why = (7 =7 (- 7))
Graph (for layer n)

Put the result in a matrix G = [Wéb




More graph theory 21
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Step 2: Creating a dictionary of all features 22

We create a dictionary from the first few (30) layers for each part.

Layer 30 (G3 \

0

Layer 1 (G;) Layer 2(G,)

Set of graphs for a part
under known conditions =

k(Gy,G1) -+ k(G Gso)
Dictionary D = : :
k(G1,G30) - k(G30,G30)

Each row of the dictionary tells us how a layer compares to the other layers.

N



The Kronecker Product of Graphs

23
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Compare everything with everything.




The Kronecker Product of Graphs 24

k(Gli Gl) k(Gll GSO)
Dictionary D, = : :
k(Gy,Gz0) - k(G3o,G30)

k(Gi X Gj) = Z‘v’rows, (I B Vij(Gi ® Gj))_l

columns

| is the identity matrix and y; ; is the decay constant.

‘k(Gi X Gj) is a number.




Step 3: Predicting Porosity from the Online Sensor Data 25

Low flaw probability
Avg. Pores Length for
each layer < 50 um

High flaw probability

Medium flaw probability
Avg. Pores Length > 200 pum

50 um < Avg. Pore Length < 200 um

Low: Avg. Pores Length for each layer < 50 um
Training of

Classifier Medium: 50 um < Avg. Pores Length < 200 pum
Algorithm

A layer from the
Dictionary D,

High: Avg. Pores Length > 200 um
Row of Numbers

[(k(an Gl)) k(Gn» GBO)]




Predicting the layer quality on-the-fly 26

Convert a new signal for a new layer into a graph (< 0.5 sec)

Graph Gy, (for layer n +1)




Predicting the layer quality on-the-fly 27

Convert the new signal into a sentence (< 2 seconds)

Onew = [k(Gnew Q G1) .. k(Gpew ® Gy)]

Use the trained model for predicting porosity (< 1 second)

Low: Avg. Pores Length for each layer < 50 um

Already Trained
Classifier Medium: 50 um < Avg. Pores Length < 200 pm
Algorithm

\ 4

Sentence

High: Avg. Pores Length > 200 um



Lack-of-fusion Detection Results

28

Predicted Classes

True Classes | Low Porosity High Porosity
X <50 um X >50 um
Low Porosity 40 5
X <50 um (out of 45) (False Alarm)
High Porosity 0 55
X >50 um (Fail to detect) (out of 55)
Predicted Classes
True Classes | Low Porosity Medium High Por.
X <50 um 50 p< x<200 pm | x> 200 pm
. 40 5
Low Porosity (out of 45) (False Alarm) 0
0 25
i ; _ 1
Medium Por (Fail to detect) (out of 41) 6
. 0 14
High Por. 1 il to detect) 0 (out of 14)

F-score ~ 95%

F-score ~ 75%



Conclusion

* Ability to identify the severity of an error with 75% accuracy
(3-level case), in less than 5 sec.

* Traditional statistical-feature-based machine learning
approach had fidelity of 35% to 40%.

29



N UNIVERSITY § OF
eb Linlé)%

NEBRASKA ENGINEERING |
ADDITIVE TECHNOLOGY LABS Reza Yavari

Mechanical and Materials Engineering

Speaker Information

University of Nebraska-Lincoln
mrezayavari89@huskers.unl.edu

https://engineering.unl.edu/lamps/




