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Defect-free production of AM parts by integrating 
in-situ sensor data and knowledge of process physics.



Digital Twin – A Gray-Box Model
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Background
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This work focusses on two of the following metal additive manufacturing processes

Directed energy deposition (DED) process Laser powder bed fusion (LPBF) process



Motivation
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Only 2 out of 7 parts were built defect free

Can we build parts without having to print-and-pray?

Part quality inconsistency is major impediment in AM
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Previous work in the Digital Twin

• G.L. Knapp, T. Mukherjee, J.S. Zuback, H.L. Wei, T.A. Palmer, A. De, T. DebRoyBuilding blocks for a 
digital twin of additive manufacturing, Acta Materialia, Volume 135, 2017.

• T. DebRoy, W. Zhang, J. Turner, S.S. Babu, Building digital twins of 3D printing machines, Scripta
Materialia, Volume 135, 2017.
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Objective and Hypothesis 11

Predict the instantaneous spatiotemporal temperature distribution with graph-
theory and combine with in-process sensor data to monitor the process condition.

Sensor 
data

Improved defect prediction accuracy

Mechanistic 
model

Hypothesis
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Yavari, M. Reza, Kevin D. Cole, and Prahalada Rao. "Thermal Modeling in 

Metal Additive Manufacturing Using Graph Theory." Journal of Manufacturing 

Science and Engineering,141, no. 7 (2019): 071007.doi: 10.1115/1.4043648

http://manufacturingscience.asmedigitalcollection.asme.org/article.aspx?articleid=2733087


Thermal Modeling using Graph Theory
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Boundary condition: 𝑄 𝑥, 𝑦, 𝑧, 𝑡 = 0 = 𝑇0, i.e. melting temperature of the material.

Yavari, M. Reza, Kevin D. Cole, and Prahalada Rao. "Thermal Modeling in Metal Additive Manufacturing Using Graph Theory." Journal 

of Manufacturing Science and Engineering141, no. 7 (2019): 071007.



Thermal Modeling using Graph Theory
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Therefore, heat equation reduces to a steady state form

𝜕𝑇(𝑥,𝑦,𝑧,𝑡)

𝜕𝑡
− 𝛼∆ 𝑇 𝑥, 𝑦, 𝑧, 𝑡 = 0; with initial condition  𝑇𝑡=0 = 𝑇0

The continuous Laplacian operator (∆) is approximated by a 
discrete Laplacian operator called the graph Laplacian matrix (𝕃)

𝑇 𝑥, 𝑦, 𝑧, 𝑡 = Φ𝑒−𝛼𝑔Λ𝑡Φ′𝑇0

The solution takes the form

Λ and Φ are the Eigen spectrum of the Laplacian matrix.

Yavari, M. Reza, Kevin D. Cole, and Prahalada Rao. "Thermal Modeling in Metal Additive Manufacturing Using Graph Theory." Journal 

of Manufacturing Science and Engineering141, no. 7 (2019): 071007.



Thermal Modeling using Graph Theory
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Yavari, M. Reza, Kevin D. Cole, and Prahalada Rao. "Thermal Modeling in Metal Additive Manufacturing Using Graph Theory." Journal 

of Manufacturing Science and Engineering141, no. 7 (2019): 071007.

Step 1- Obtain the geometry of a part and 
convert it to a set of discrete nodes.
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Step 2- Construct a network graph 
from the sampled nodes.

Layers to follow Deposited 

layer

Step 3- (a) Heat a layer hatch-by-hatch to diffuse heat 
through the part (b) Deposit a new layer.

Sintered hatch New deposited layer
Fused layer

Laser

(a) (b) Step 4 – Obtain the result as 
temperature array (T) which shows 
the temperature history of the part.

Steps involved in graph theory-based thermal modeling
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Thermal Modeling using Graph Theory

Reduces the time taken for thermal simulation to 1/10th of FE analysis with error less than 10%.

Yavari, M. Reza, Kevin D. Cole, and Prahalada Rao. "Thermal Modeling in Metal Additive Manufacturing Using Graph Theory." Journal 

of Manufacturing Science and Engineering141, no. 7 (2019): 071007.
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Mojtaba Khanzadeh, Sudipta Chowdhury, Mark A. Tschopp, Haley R. Doude, Mohammad Marufuzzaman & 
Linkan Bian (2018) In-situ monitoring of melt pool images for porosity prediction in directed energy deposition 
processes, IISE Transactions, DOI: 10.1080/24725854.2017.1417656

Case Study 1
Experimental data was generated at 

Mississippi State University by Dr. Linkan Bian

https://doi.org/10.1080/24725854.2017.1417656


Test Artifact
20

Power: 300 W

Single track thin wall part with 
Ti6Al4VOptomec LENS 750  

2
7

.5
6

 m
m

55 mm

0.508 mm

Scan Speed: 12.7 mm/s

Layer Thickness: 0.508 mm

Detecting flaws in thin-walls by combining in-situ pyrometer data and 
the corresponding graph theory-derived simulated temperature

Post-process characterization with 
X-ray computed tomography

Flaws



Experimental Setup
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Dual-wavelength pyrometer

• CMOS detector with array size of 752 pixel × 480 pixel

• Exposure time (2.0274 ms)

• Coaxial view the laser shaft

Short-wave infrared (SWIR) camera

• Oriented at approximately 45o to the  table



Simulation of thin-wall
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Inactive Block

Layer
Thickness

Block Length 
Hatch

Thickness

Active Block

Time Step 𝑡1

Time Step 𝑡2

Time Step 𝑡6

Block-by-block regime is adopted to simulate the thin-wall



Comparison Between Experimental and Simulation Data
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There is a high correlation between simulated part-level 
temperature and experimental meltpool temperature data.



Combining Simulation and Sensor Data
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Experimental Data 
Meltpool Images

Part-level Simulation

• Obtain features (mean, standard deviation) of each melt pool image where pixel values
are above 1600 oC.

• Calculate the statistical features (mean, standard deviation) of the part temperature
from simulation.

• Use X-ray CT data to label locations with flaw size larger than 100 μm.

Ground Truth: XCT



Prediction of Porosity
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Data Input features F-Score

Pyrometer data
2: mean, standard deviation of 
meltpool area.

81.6% (3.2%)

Simulation data
2: mean, standard deviation of 
temperature readings.

82.9% (2.7%)

Digital Twin:
Pyrometer +  Simulation data

2: mean, standard deviation of 
pyrometer readings.

+

2: mean, standard deviation of 
temperature readings.

91.0% (1.2%)

Confusion Matrix for two-level classification (Digital Twin)

True Classes ↓ Predicted Classes

Non-Porous Porous

Non-Porous (38 total) 38 0 (False Alarm, 
Type I error)

Porous (38 total) 6 (Failing to detect , Type II error) 32

The digital twin predicts the occurrence of porosity with higher 
accuracy in comparison to individual sensor and simulation data
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Montazeri M, and Rao P., Sensor-Based Build Condition Monitoring in Laser Powder Bed Fusion Additive 
Manufacturing Process Using a Spectral Graph Theoretic Approach.  ASME. J. Manuf. Sci. Eng. 2018;140(9):091002-
091002-16. doi:10.1115/1.4040264. 

Case Study 2
Experimental data was generated at 

NIST by Dr. Brandon Lane and Dr. Jarred Heigel



Experimental Setup
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• Thermal camera
Frame rate  1800 fps  
Wavelength 1350 nm – 1600nm

• High speed camera: Frame rate 4000 fps

• Photodetector: Sampling rate 1MHz 

Heterogeneous sensor setup used in this work



Test Part Geometry
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3-D part schematic Side view schematic

16 mm × 16 mm × 16 mm test part (Inconel 625) with 40.5° overhang

Classify the difference between the overhang and bulk section by 
combining photodetector and thermal model data



Rationale
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Heat tends to accumulates in the overhang region 
which leads to flaw formation, e.g., poor surface finish

Overhang geometries are challenging to build and prone to failure



Sample Sensor Data
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The photodetector and thermal camera capture the change in 
laser position from bulk section to overhang edge



Simulation of Test Artifact
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16 mm

16 mm16 mm

The graph theoretic model predicts the overheating of the overhang structure

Heat accumulates in the overhang region which leads 
to flaw formation, e.g., poor surface finish



Modified Stripe-wise Simulation
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ℎ𝑡 = hatch thickness 𝑆𝐿 = Stripe length 𝑏𝐿 = Block length

The simulation is modified to accurately to correspond with the sensor data



Predicting Signatures Belonging to Different Section
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Data Input features F-score

Photodetector data
2: mean, standard deviation of intensity readings taken 
over 60 consecutive hatches in a moving window. Data 
is available for 320 total hatches.

79.6% (1.5)

Simulation data
2: mean, standard deviation of temperature predictions 
for 15 consecutive blocks. There are 10 blocks per 
hatch, for a total of 3200 simulation blocks. 

76.3% (1.1)

Digital Twin:
Photodetector +  
Simulation data

2: mean, standard deviation of intensity readings +
2: mean, standard deviation of temperature readings.

87.5% (1.4)

Ground truth: 
Thermal camera data

2: mean, standard deviation of intensity readings. 93.2% (1.9)

Confusion Matrix for two-Level Classification (Digital Twin)

True Classes ↓
Predicted Classes

Bulk Overhang

Bulk 57 (out of 59)
2 (False

Alarm)

Overhang 12 (Failing to detect) 47 (out of 59)

The digital twin predicts the occurrence of porosity with higher 
accuracy in comparison to individual sensor and simulation data
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Conclusion and Future Work

Combining the theoretical simulations with in-process sensor data leads to 
higher statistical fidelity of detecting process flaws.

– Prediction fidelity increases to over 85%  compared to 75% using only 
sensor data or simulation alone.
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Extend for prediction of different types of flaws, such as cracking and 
deformation, with data acquired from multiple in-process sensors.
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